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Abstract
In the last decade a tremendous progress has been achieved
in understanding the control of apoptosis by survival and
death factors as well as the molecular mechanisms of
preparation and execution of the cell's suicide. However,
accumulating evidence suggests that programmed cell death
(PCD) is not confined to apoptosis but that cells use different
pathways for active self-destruction as reflected by different
morphology: condensation prominent, type I or apoptosis;
autophagy prominent, type II; etc. Autophagic PCD appears
to be a phylogenetically old phenomenon, it may occur in
physiological and disease states. Recently, distinct bio-
chemical and molecular features have been be assigned to
this type of PCD. However, autophagic and apoptotic PCD
should not be considered as mutually exclusive phenomena.
Rather, they appear to reflect a high degree of flexibility in a
cell's response to changes of environmental conditions, both
physiological or pathological. Furthermore, recent data
suggest that diverse or relatively unspecific signals such
as photodamage or lysosomotropic agents may be mediatd
by lysosomal cysteine proteases (cathepsins) to caspases
and thus, apoptosis. The present paper reviews morpholo-
gical, functional and biochemical/molecular data suggesting
the participation of the autophagosomal ± lysosomal com-
partment in programmed cell death. Cell Death and
Differentiation (2001) 8, 569 ± 581.

Keywords: autophagic cell death; autophagic vacuoles; BID;
caspase-independent PCD; cytoplasmic vacuolisation; endoplas-
mic reticulum

Abbreviations: Apg-genes, autophagy-defective genes; ASP,
apoptosis speci®c protein; PCD, programmed cell death; PI3-K,
phosphatidylinositol-3-kinase; MSDH, O-methyl-serine dodecyl-
amide hydrochloride;RID, receptor internalizationanddegradation;
ROS, reactive oxygen species; TAM, tamoxifen; TGF-b1,
transforming growth factor-b1; TNF-a, tumor necrosis factor-a;
TOR, target of rapamycin; 3-MA, 3-methyladenine

Diversity of programmed cell death:
morphological evidence of autophagic
cell death in states of health and disease

In the last decade apoptosis attracted growing interest of the
scientific community and a tremendous gain in knowledge
concerning the molecular events of its signalling, preparation
and execution has been achieved (for review:1 ± 6). However,
accumulating morphological and biochemical evidence
suggests that programmed cell death (PCD) is not confined
to apoptosis but that cells use different pathways for active
self-destruction: condensation prominent, type I or apoptosis;
autophagy prominent, type II PCD etc.1,7 ± 12 In particular,
according to the original morphological and histochemical
based description of apoptosis, the autophagosomal ±
lysosomal system was considered not to play a role in initial
stages of apoptosis.13,14 Rather, the action of lysosomes
appeared to be restricted to the (heterophagic) degradation of
apoptotic bodies ensuing after phagocytosis by vital cells.13,14

Thus, phagocytosis of apoptotic cell residues constitutes an
integral part of the overall suicide process,5 the molecular
aspects of which are reviewed elsewhere in this issue of Cell
Death and Differentiation. In the present paper, first
morphological, functional and molecular features of autopha-
gic cell death (type II PCD) will be reviewed. Secondly, recent
evidence indicating an important function of lysosomal
cysteine proteases in the preparatory stages of apoptosis
(type I PCD) such as processing of BID and caspases will be
addressed.

Reviewing the literature revealed a non-consistent use of
terms to describe cell death associated with autophagocy-
tosis as it includes necrosis, non-apoptotic type of cell
death, apoptosis/type I PCD, autophagic cell death/type II
PCD and others (Table 1).15 ± 38 For the purpose of
summarising the morphological evidence of its occurrence
in states of health and disease, electronmicroscopical
demonstration of autophagic vacuoles in dying cells was
taken as conditio sine qua non to denote cell death as
autophagic/type II PCD; in addition, available histo- and
biochemical criteria indicating a role of the autophagoso-
mal ± lysosomal compartment were included into Table 1. It
should be emphasised, that referring to the morphological/
histochemical features does not imply a causative relation-
ship between macroautophagocytosis and eventual mani-
festation of a cell's suicide; data suggesting a functional
link between these phenomena as well as related
molecular events will be discussed in subsequent para-
graphs.

Autophagic cell death appears to be a phylogenetically
old phenomenon as it has been observed in the slime mold
Dictyostelium discoideum and in the nematode C elegans
(Table 1);15 ± 17 it even might have developed before
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apoptosis.10,39 A large body of morphological, histo- and
biochemical evidence for autophagic cell death in vivo was
provided by developmental biology. Insect metamorphosis
may be considered as one of the most extreme biological
conditions of tissue remodelling including autophagic cell
death; cells of ecto-, endo and mesodermal origin are
affected.7,9,11,18 ± 23 Likewise, in vertebrate development,
autophagic cell death appears to be a prominent feature
associated with organ morphogenesis as exemplified by
shaping of extremities, cavity formation in intestine and
regression of sexual anlagen.7,8,11,25 Autophagic cell death
also has been reported to occur in adulthood of insects and
vertebrates including humans; it is often associated with the
elimination of (large secretory) cells during adjustment of
sexual organs and ancillary tissues to seasonal reproduc-
tion.7,8,11,26,28,31 As to pathophysiology, autophagic cell
death has been associated with experimental and human
neurological diseases32 ± 35 as well as cytotoxic drug
treatment.38

In summary, without attempting to force the data, the
morphological observations strongly support the concept
that autophagic cell death is characterised by features
different from apoptosis (Figure 1) and which is a
phenomenon of general importance occurring in a broad
spectrum of (patho)physiological conditions. The most
prominent features of autophagic cell death comprise
degradation of cytoplasmic components resulting in
progressive loss of electrondensity; the descriptions of
autophagic cell death consistently include that degrada-
tion of cytoplasmic components precede nuclear collapse.
Notably, the number of mitochondria in the cytoplasm
decreased but those present in cytoplasm appeared
intact; conceivably, the remaining mitochondria maintain
ATP-levels required for the completion of autodigestion
(see below and Figure 2). Like apoptosis, autophagic cell
death has been described to be completed by phagocy-
tosis.7 ± 9,18,20,29,31 In line with the general function of
macroautophagy, namely being the major inducible
pathway for degradation of cytoplasmic components
including whole organelles, autophagic PCD predomi-
nantly appears to be activated when the developmental
programme or in adulthood, homeostatic mechanisms
demand massive cell elimination; in all cases, the bulk
of cytoplasm is removed by autophagy before nuclear
collapse ensues. In instances of cell injury, damaged
organelles or membranes may be transferred into the
autophagic pathway, serving as homeostatic mechanism
at the subcellular scale, and that might be overwhelmed
resulting in elimination of the whole cell. It is tempting to
speculate that autophagic elimination of potentially
harmful subcellular structures might be a functional
analogue to the cell's safeguards controlling DNA repair
and p53-mediated apoptotic suicide upon DNA damage.
Finally, it should be noted that autophagic cell death and
apoptosis are not mutually exclusive phenomena. Thus,
both types of cell death can occur simultaneously in
tissues,7,11,27 ± 29,35,38 but also subsequently as governed
by the developmental programme.31 Moreover, dying cells
may share apoptotic and autophagic features (`mixed
type').7,11,20,21,37,38,40 ± 44 The determinants for the even-

tual manifestation of either type of programmed cell death
are poorly understood.

Autophagic PCD: from morphology to
molecular events

Current concepts on macroautophagy suggest that it ensues
through a sequence of morphological visible events which are
highly conserved from yeast to humans (for review:39,45,46).
Briefly, the macroautophagic pathway in mammalian cells
starts with the sequestration of cytoplasmic material to form
an early autophagosome (Figure 2). The double-membrane of
the early autophagosomes is generally considered to derive
from ribosome-free regions of the endoplasmic reticulum;
alternatively, it has been suggested to originate from a related
organelle named `phagophore' or from post-Golgi membranes
(for review:39,45,46). Autophagic vacuoles (autolysosomes)
result from fusion of late autophagosomes with lysosomes;

Figure 1 Development and patterns of cell death. (1) Commonalities of
apoptosis and autophagic cell death: see text. Apoptosis: (2) condensation of
cytoplasm and of chromatin at the nuclear membrane to sharply delineated
masses (often like crescents). (3) cell fragmentation into apoptotic bodies. (4)
Phagocytosis (in vivo) and heterophagic degradation. Note: according to
original description autophagy/lysosomes do not play a distinct role early in
apoptosis. Autophagic cell death: (2) Autophagy: formation of autophagic
vacuoles (AVs; open circles) and degradation of cytoplasmic constituents; (3)
Pyknosis, single pyknotic mass in the centre of the nucleus, nuclear envelope
still intact, cytoplasm amorphous with few clusters of AVs and mitochondria
(as observed in MCF-7 cells). Note: autophagocytosis with apoptotic-like DNA
condensation/fragmentation may also occur; (4) Phagocytosis (in vivo) and
final degradation. (5) A cell may enter apoptosis or autophagic cell death
which, however, may not be completed and secondary necrosis ensues. For
references: see text
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thereby, the final degradation of the sequestered cytoplasmic
material is triggered (Figure 2). Cytoskeletal proteins are an
integral part of this pathway; the sequestration requires
intermediate filaments (cytokeratin and vimentin), the move-
ment and fusion of lysosomes with the late autophagosomes
requires the microtubular system (for review39,45,46). All steps
including the final degradation of sequestered cytoplasmic
material in autolysosomes are ATP-dependent (Figure 2; for
review:39,45,46).

A functional link between macroautophagoytosis and cell
suicide could be established by inhibition experiments with
3-methyladenine (3-MA).40,44,49 ± 54 3-MA has been de-
scribed to specifically block the sequestration step;49 at
the molecular level 3-MA has been found to inhibit class III
phosphatidylinositol-kinase activity (Figure 2).54 Thus, 3-MA
has been found to inhibit both, the formation of autophagic
vacuoles and the eventual cell death as indicated by
nuclear destruction in a number of experimental settings

including tamoxifen treated human mammary carcinoma
cells (MCF-7), gastric and glioma cells overexpressing Ras,
TNF-a treated human T-lymphoblastic leukaemic cells,
neuronal cells upon serum withdrawal or arabinoside,
kidney cells lines treated with bacterial toxins such as
ricin, abrin, Shiga toxin and diphtheria toxin.40,44,49 ± 53 In
view of functional criteria for the differentiation between
subtypes of PCD, it is of interest to mention preliminary
data suggesting that 3-MA does not inhibit TGF-b1 induced
apoptosis of hepatocytes (W Parzefall, personal commu-
nication).

Furthermore, possible interactions of mechanisms
controlling the biogenesis of lysosomes55 and their
subsequent fusion with autophagosomes with those of the
cell's suicide have to be considered. Early studies on
regressing endocrine-dependent tumours suggested the
involvement of de-novo-synthesis and an increased activity
of lysosomal enzymes.56 Both, the increment in number
and activity of lysosomes were considered to be the effect,
not the cause, of tumour regression.56 More recently, TNF-
a was found to induce an autophagic type of cell death in T-
lymphoblastic leukaemic cells; 3-MA inhibited both the
formation of autophagosomes and cell death.50 However,
asparagine, which inhibits the fusion of lysosomes with
autophagosomes, did not prevent TNF-a induced cell
death.50 Thus, inhibition of an event downstream of
sequestration (Figure 2) did not affect the execution of
autophagic cell death, suggesting that the supply of
lysosomes might not be a check point for initiation of this
type of programmed cell death. Likewise, tamoxifen-
induced autophagic cell death in MCF-7 cells was not
associated with an expansion of the lysosomal compart-
ment as indicated by biochemical and histochemical means
(ToÈ roÈk and Bursch, unpublished observation). Furthermore,
3-MA is known to slightly increase lysosomal pH in
hepatocytes.51 However, increase of the lysosomal pH by
monensin or NH4Cl did not protect kidney cells against
ricin-induced lysis, thus excluding a possible increase in
lysosomal pH as cause for the protective action of 3-MA.51

A cautionary note on the role of lysosomal enzymes during
cell death has been published recently.57 Beem et al.57

suggested that misconceptions may emerge because of
preparatory artefacts resulting in breakage of apoptotic
bodies during tissue homogenisation. It may well be that
breakage of apoptotic bodies during homogenisation of
tumours is the cause for an observed increase in soluble
beta-glucuronidase activity, while the lysosomes of the
ingesting tumour cells remain intact.57 In summary, at
present the interactions of lysosome biogenesis with the
pathway(s) leading to autophagic cell death remain elusive.
However, the current data based on functional criteria
suggest that the sequestration step might provide a
superior regulatory link between autophagocytosis and
cell suicide rather than downstream events in the
autophagic pathway.

As to biochemical characteristics, recent evidence
suggests that the cytoskeleton exhibited distinct fates
during autophagic and apoptotic cell death. In apoptosis,
the cell's preparatory as well as executional steps include
depolymerisation or cleavage of actin, cytokeratins, lamins

Figure 2 Macroautophagocytosis: concepts on regulation and morphological
manifestation. Macroautophagy: For description see text. Note: simplified
presentation as early and late autophagosomes, acidification, integration of
autophagosomal membrane into that of autophagic vacuole etc. are not
indicated (for review:39,45,46). Furthermore, cytoplasmic components may
also be degraded by microautophagy, crinophagy, hsc73 chaperone-mediated
autophagy, or non-lysosomal pathways including the ubiqutin-proteasome
pathway and calpains as reviewed elsewhere.46 ± 48 p70S6kinase pathway:
Schematic diagram following Dennis et al.,61 (see text for explanation and
references). APG genes: autophagic defective genes; mTOR: mammalian
target of rapamycin. Rapamycin complexes with FKBP-12 (FK506 binding
protein) to inhibit mTOR-phosphorylation. p70S6k: p70S6-kinase; hypopho-
sphorylated 70S6k promotes detachment of ribosomes from RER and
sequestration/autophagy; in contrast, hyperphosphorylated p70S6k promotes
attachment of ribosomes to ER. ?: Stimulation; Ð| inhibition
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and other cytoskeletal proteins, most probably resulting in
the typical final shape of apoptotic cells (details and
references in2,58). In contrast, as exemplified by autopha-
gic death of MCF-7 cells after tamoxifen, the cytoskeleton
was found to be redistributed but largely preserved, even in
cells exhibiting nuclear condensation/fragmentation (i.e.
irreversible stage of cell death).58 A pronounced fragmenta-
tion of the cytokeratin could not be detected before MCF-7
cells detached from the substrate and therefore probably
were in a stage of secondary necrosis (Figure 1).58

Remarkably, the vast majority (about 85%) of MCF-7 cells
exhibiting a pyknotic nucleus still contained F-actin as
demonstrated by its interaction with phalloidin.58 Polymer-
isation of G- to F-actin is an ATP-dependent process and
therefore, F-actin is a sensitive indicator of the metabolic
state of a cell. In support of this notion, electronmicroscopy
and rhodamine 123 staining revealed that at late stages of
the death process the cytoplasm appeared amorphous, but
the few remaining autophagic vacuoles were associated
with clusters of structurally and functionally intact mitochon-
dria.44,58 The preservation of mitochondria and thus ATP
synthesis throughout autophagic degradation was also
supported by the observation that mitochondrial dehydro-
genase-activity did not decrease with time in TAM treated
MCF-7 cultures (ToÈ roÈk and Bursch, unpublished observa-
tion). It appears likely, that ATP synthesis is maintained at
a level required for the completion of autophagocytosis.
Moreover, the protein cross-linking enzyme transglutami-
nase, which is activated in apoptotic hepatocytes,59 is not
involved in tamoxifen induced PCD of MCF-7 cells. Thus,
the preservation of the cytoskeleton during autophagic
death of MCF-7 cells matches with current concepts on the
cytoskeleton's function in macroautophagy and furthermore,
strongly supports the morphological evidence that apopto-
sis and autophagic reflect distinct pathways of cell suicide.

The genetics and signalling of macroautophagy is best
studied in yeast, but ± like its morphological appearance ±
the molecular events of initiation and execution of
macroautophagy have been found to be highly conserved
from this organism to humans.39,46,60,61 Following Dennis et
al.61 a hypothetical model on molecular control of
autophagy based upon yeast and mammalian data is
depicted in Figure 2 (`p70S6-kinase pathway'). In yeast, to
date 14 Apg-genes (autophagy-defective genes) are known
to act in a conjugation cascade as reviewed elsewhere.60

Two mammalian homologues of the Apg gene family have
been identified, namely ASP/hApg5 (ASP: apoptosis
specific protein;62 and Apg6/vps30 (beclin-1).63,64 ASP/
hApg5 was first described as `apoptosis specific protein'
because of its expression in Burkitt's lymphoma, trans-
formed retinoblasts and a number of other human and
rodent cell lines during apoptosis (references in62). DNA
sequencing revealed this protein to be homologous the
yeast Apg5 gene. To date however, a functional link
between ASP/Apg5 expression and cell death has not
been established. Most recently, beclin-1 was the first gene
described to induce autophagocytosis in mammalian
cells.63,64 Beclin 1 is a bcl-2-interacting protein with
structural similarity to the yeast autophagy gene apg6/
vps30. It was found to be expressed ubiquitously at high

levels in normal breast epithelia, but mono-allelically
deleted in 40 ± 75% of sporadic human breast cancers
and ovarian cancers. Beclin-1 promoted autophagy in yeast
and in human MCF-7 breast carcinoma cells; beclin-1
induced formation of autophagic vacuoles was prevented
by 3-MA. The autophagocytosis-promoting activity of beclin
1 in MCF-7 cells was associated with inhibition of MCF-7
cell proliferation, in vitro clonigenicity and tumorigenesis in
nude mice. In these studies, no evidence for an enhanced
rate of cell death in MCF-7.beclin1 clones was found using
trypanblue exclusion as an indicator of cell viability.64

However, previous studies of our own with MCF-7 cells
revealed that the manifestation autophagic cell death by
nuclear condensation/fragmentation was neither associated
with release of cytoplasmic enzymes into the culture
medium nor with a significant trypanblue staining of dead
cells, thus matching with the metabolic requirements of
autophagocytosis.39,45 These observations suggest that
autophagic cell death ± like apoptosis ± at least in early
stages is not associated with loss of cell membrane
integrity. Thus, whether beclin-1 also might induce cell
death cannot be excluded yet. Downstream of Apg-genes
act TOR (target of rapamycin) and p70S6-kinase; the TOR/
p70S6-kinase pathway plays an important role in balancing
anabolic and katabolic states of cells.45,61,65 ± 68 Hypopho-
sphorylated p70S6-kinase promotes detachment of ribo-
somes from endoplasmic reticulum; this is considered to be
one of the initial molecular events in sequestration (for
review:39,45,46). As outlined above, the sequestration step
provides an important regulatory link between autophago-
cytosis and cell suicide and therefore, the TOR/p70S6-
kinase pathway appears to be a promising target for
studying the interaction between autophagocytosis and
cell death.

Studies by Kuchino et al.52,53 on the RAS-signalling
pathway provided the first clear evidence for molecular
interactions between autophagy and programmed cell
death in mammalian cells. It has been shown that the
expression of oncogenically mutated ras gene in human
glioma and gastric cancer cell lines induces cell death
including autophagocytosis. The nuclei remained relatively
well-preserved and were negative for TUNEL staining,52,53

thus matching with the general morphological features of
type II PCD (cf Table 1). The oncogenic Ras-induced cell
death was dependent on the activity of phosphatidylinositol-
3-kinase (PI3-K), a physiological downstream effector of
Ras.53 A seemingly paradox was that PI3-K activity is
required for both, induction of autophagocytosis but also for
S6-phosphorylation of the ribosomal protein S6 and
consequently, block of autophagocytosis (see above).
However, recent studies on human cancer cells revealed
that distinct classes of phosphatidylinositol-3-kinases act in
opposite directions in the pathways signalling for seques-
tration.54 Thus, the class III PI3-K product PtdIns(3)P is
required for sequestration; formation of PtdIns(3)P as well
as of autophagosomes was found to be inhibited by 3-MA,
wortmannin and LY294002.46,54 On the other hand,
increasing the class I PI3-K products PtdIns(3,4)P and
PtdIns(3,4,5)P inhibits macropautophagocytosis and fa-
vours protein synthesis, cell proliferation and cell survival
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(Figure 2).46,54,67 Furthermore, Ras-induced cell death
occurred in the absence of caspase activation, it did not
require wt-p53 activity and was not inhibitable by the anti-
apoptotic Bcl-2 protein.53 Notably, the functional effector
machinery for the execution of apoptosis could be activated
in the Ras-transformed cells by appropriate signals,
demonstrating that the manifestation of autophagic cell
death does not simply reflect defective apoptosis.53 Thus,
these studies strongly suggest that autophagic cell death
may be assigned to the caspase-independent type(s) of
programmed cell death including apoptosis, as recently
reviewed elsewhere.2,52,69,70 Likewise, studies on isolated
neurons revealed that the manifestation of autophagic cell
death may be controlled upstream of caspase cascades,
but downstream of JNK/p38 (after NGF-withdrawal) and
p53 (after cytosine arabinoside).40 These studies also
suggested that the same apoptotic signals that target
mitochondria also activate autophagy. Once activated,
autophagy may mediate caspase-independent neuronal
cell death.40

Taken together, although a few molecular features (apg-
genes, Ras, PI3-K) may be assigned to the morphological
manifestation of autophagic cell death, the mechanisms of
initiation and execution of this type of programmed cell
death are still enigmatic. However, the few tesseras on
molecular interactions between autophagy and cell death
obtained so far support the concept that both processes
share common signalling pathways. The apg-gene family
and TOR/p70S6 kinase pathway provide most likely
candidates. The RAS ± signalling in autophagic cell death,
for instance might interact with this pathway by crosstalk
via PI3-kinases. Furthermore, as outlined above apoptosis
and autophagic cell death are not mutually exclusive
phenomena, but may occur in the same cell. In support
and extension of the morphological observations, recent
high-throughput proteom analyses revealed evidence that
autophagic death of tamoxifen treated MCF-7 cells and
CD95-induced apoptosis in Jurkat cells shared some
commonalities as exemplified by the cell's stress response
(translocation of heat shock proteins).12,71

Differences and commonalities of
autophagocytosis and phagocytosis

Autophagocytosis and phagocytosis share a dynamic
reorganisation in the structure and composition of mem-
branes.5,45,46,72 In case of phagocytosis, ligation of external
particles such as apoptotic bodies to the phagocyte
membrane initiates its reorganisation; the ligation appears to
be driven by surface tags of apoptotic bodies or by release of
soluble factors from dying cells targeted at receptors of the
phagocytes.5,46,72,73 Engulfment may be considered function-
ally equivalent to the sequestration step during autophago-
cytosis; as initial events both precede (auto)phagosome
formation. Biochemically, these steps share their require-
ment for actin.5,45,46,72 Notably, the size limits of particles for
being processed through either pathway are in the same
range, namely 300 ± 900 nm in diameter.46,72,73 Like the
tagging of apoptotic cells, the targeting of mitochondria,
peroxisomes, ER-membranes and cytosolic constituents for

sequestration appears closely regulated. Macroautophagy
can operate with selectivity for certain subcellular structures
over others, but also in a largely nonselective fashion (for
review:39,45,46). For instance during regression of chemically
induced rat liver hypertrophy, selective autophagic elimination
of either smooth endoplasmic reticulum or peroxisomes
(pexophagy) has been observed; mitotic chromosomes43

and damaged mitochondria can be eliminated by the same
way (for review:39,45,46). In general, the underlying mechan-
isms for selection or exclusion of cell components for/from
autophagy are poorly understood. Future studies will have to
address the underlying molecular events and their link to cell
death signalling pathways.

Remarkably, a number of observations suggested that
the autophagic type of cell death ensues independent of
caspases.52,69,70 In apoptosis, the caspase cascades
provide a powerful tool to mediate diverse pro-apoptotic
signals to a `final common pathway'; most if not all the
prominent morphological features of apoptosis as originally
described are caspase-dependent.2 From a teleological
point of view, apoptosis is designed to delete cells from
tissues rapidly; the clearance of apoptotic cell residues
from tissues is facilitated by tagging them for phagocytosis5

as well as by volume reduction (condensation/fragmenta-
tion) being appropriate for phagocytosis (300 ± 900 nm).
What would be the advantage for activating an autophagic
type of cell suicide? Hypothetically, self-digestion preceding
suicide might reduce the functional load imposed on the
surviving cells by phagocytosis and break down of huge
amounts of dead cells as necessary in remodelling tissues;
thereby, a rapid elimination of cells would be facilitated and
would help to prevent inflammatory and immunological
responses.5 In addition, soluable molecules resulting from
autophagic breakdown might be recycled by other
mechanisms such as pinocytosis.

The final (post mortem) degradation of apoptotic bodies
as compared to the final stages of autophagocytosis
deserves a comment. For instance, in the liver in vivo the
morphological (incl. size) and histochemical features of
phagocytosed apoptotic bodies closely resemble those of
autophagic vacuoles.74,75 Thus, the final lysis and
reutilisation of the digested material seems very likely not
to differ significantly except its duration: in the liver in vivo,
the half-life time for the clearance of apoptotic bodies was
found to be about 120 min,75 that of autophagic vacuoles
ranged from 5 ± 45 min, depending on the material
subjected for degradation.76 From a practical point of
view, the similarities in the post mortem appearance of
apoptotic bodies and autophagic vacuoles are of impor-
tance as the unequivocal identification and quantitative
analysis of either phenomenon can be affected. For
instance, in in vivo studies on small intestinal crypts of
normal mice and Crocker mouse ascites tumours treated
with cytostatic drugs, phagocytosed apoptotic bodies have
been mistaken for autophagic vacuoles.77 However,
apoptotic bodies (ABs) can be discriminated from autopha-
gic vacuoles (AVs) based upon the chromatin residues
present in ABs, but usually not in AVs; electronmicroscopy
and/or specific stains to visualise DNA revealed to be most
helpful tools as reviewed previously.75 Finally, in cultured
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cells cytoplasmic vacuolisation is widely observed, but this
type of vacuolisation is considered to be distinct from that
consequently to autophagy (for review:78). Taken together,
these phenomena should be taken into account and
appropriate techniques should be used to verify gross
morphological observations.

Lysosomes in cell death

Early after discovery, lysosomes (`lytic bodies') have been
associated with necrosis ensuing after cell damage, but are
not generally considered as its primary cause.79 ± 82 For
instance, a close time course study on chemical hypoxia
induced cell damage in cultured hepatocytes, namely ATP-
deletion, bleb formation with cellular swelling, onset of a
mitochondrial permeability transition, disintegration of lyso-
somes, plasma membrane failure from bleb rupture, and cell
death has been published more recently.82 This study
suggests that the release of hydrolytic enzymes from
lysosomes may be the final event causing lysis of the
membrane and irreversible loss of viability.82

However, activation of lysosomal enzymes is not
restricted to the necrotic type of cell death. Thus, a
number of lysosomotropic agents has been described to
induce apoptosis (Figure 3).83 ± 90 The potency of lysosomal
enzymes to trigger apoptosis revealed these organelles as
potential targets for increasing a cell's sensitivity for
photodynamic therapy, for instance by facilitating oxidative
stress via intralysosomal fenton-like reactions.83,91 ± 93 In
general, the magnitude of lysosomal rupture and conse-
quently, the amount of hydrolytic enzymes released into the
cytosol may induce either reparable sublethal damage,
apoptosis, or necrosis;86,88,94,95 the dose-dependency of

causing either apoptosis or necrosis is exemplified by the
lysosomotropic agent MSDH (apoptosis 450 mM vs
necrosis 575 mM; Figure 3).88 The decision between
necrosis or apoptosis may also depend upon the organelle
being targeted primarily as shown in murine leukaemia
L1210 cells treated with the photosensitising agent chlorin
e6 triacetoxymethyl ester: a low dose targeted mitochondria
and triggered apoptosis, whereas a higher dose targeted
lysosomal membranes with cell death likely occurring via a
necrotic process.95

The lysosomal cystein proteases, cathepsins, have been
implicated in the activation of caspases and apoptosis
(Figure 389,90,96,97). For instance, studies on cultured
fibroblasts and cardiomyocytes revealed that lysosomal
destabilization (measured as release of cathepsin D)
precedes release of Cytochrome c, loss of mitochondrial
membrane potential and morphologic manifestation of
apoptosis.89,90 Pepstatin A, an inhibitor of cathepsin D,
was found to inhibit caspase-3-like proteolytic activity and
to prevent apoptosis in several experimental set-
tings.89,90,98,99 Notably, two p53 DNA-binding sites located
in the cathepsin D-promoter have been found to specifically
bind to p53 protein in vitro and appeared to mediate
transactivation during p53-dependent apoptosis.99 More-
over, high levels of cathepsin D antisense RNA protected
HeLa cells from interferon-gamma and Fas/APO-1-induced
death.100 In transgenic models overexpression of cathepsin
D induced or sensitised HeLa and PC12 cells to apoptosis
upon serum deprivation.101 Other lysosomal cysteine
proteases such as cathepsin B,C,L have been implicated
in caspase activation as well.97,102,103 In particular, in cell
free systems purified cathepsin B has been found to
directly cleave caspase zymogens: it readily cleaved

Figure 3 Potential roles of lysosomes in cell death. Summary of current concepts on the role of lysosomes for the induction of cell death, see text for explanation
and references. Note: simplified as not distinguished between different stages of lysosome maturation. Lysosomotropic agents: a-tocopheryl succinate84; 9-
Acetoxy-2,7,12,17-tetrakis-(beta-methoxyethyl)-porphycene (ATMPn)87; O-methyl-serine dodecyl-amide hydrochloride (MSDH)88; 5,8-dihydroxy-1,4-naphthoqui-
none89; chlorin e6 triacetoxymethylester (CAME)95; polyamine oxidase inhibitor MDL-72,527118; imidazo-acridinone C1311119; retinol120; Necrosis: 86 ± 88,94,95
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procaspase-11 and 1; procaspases 2, 6, 7 and 14 revealed
to be weak, procaspase 3 a very poor and finally,
procaspase 12 to be no substrate for cathepsin B.102

However, the physiological relevance of a direct physico-
chemical interaction between cathepsin B and caspases
has been challenged. Thus, Salvesen et al.104 most
recently found no evidence for a direct role of lysosomal
proteases in caspase activation. Rather, proteases that
have leaked from lysosomes appear to cleave BID at Arg65
and thus, caspase activation may ensue via the mitochon-
drial pathway (Figure 3). The authors proposed that BID
acts as a general sensor of proteolysis by endopeptidases
and that this pathway enables cells to respond to
adventitious and potentially harmful proteolysis by execut-
ing the apoptotic suicide.104 Likewise, cathepsin B has
been found to contribute to TNF-a-mediated hepatocyte
apoptosis by promoting mitochondrial release of Cyto-
chrome c (Figure 3).105 The lysosomal cystein proteases,
however, seem not to act exclusively via the mitochondrial
Cytochrome c/APAF-1/caspase-9 cascade as evidence for
a lysosomal-mediated activation of caspase-3 by a distinct
pathway has been provided (Figure 3).106 Taken together,
the specific roles of lysosomal cysteine proteases in the
activation of caspases await elucidation. It should be also
noted, that inhibition of cathepsins in neuronal cells and in
primary hepatocyte cultures has been found to result in
induction rather than inhibition of apoptosis.107,108 Finally,
the plethora of lysosomal enzymes include nucleases and
indeed, lysosomal endonucleases have been described
giving raise for DNA fragmentation considered typical of
apoptosis, using photo-oxidative damage to destabilise
lysosomal membranes.85,86

Lysosomes have also been found to be involved in the
control of CD95L presentation at the cell surface and
thereby, of apoptosis. Thus, newly synthesised CD95L is
stored in specialised secretory lysosomes in CD4+ and
CD8+ T cells as well as natural killer cells; polarised
degranulation controls the delivery of CD95L to the cell
surface and eventually apoptosis.109 Likewise, in
adenovirus infected cells the adenovirus RID (receptor
internalisation and degradation) protein complex, mediates
internalisation of cell-surface CD95 and its destruction
inside lysosomes (Figure 3). Removal of CD95 from the
surface of adenovirus-infected cells expressing RID may
allow infected cells to resist CD95-mediated cell death and
thus promote their survival.110 In vivo, promotion of cell
survival has been observed in transgenic mice: congenital
deficiency of lysosomal beta-glucuronidase results in
prolongation of CrmA expression and thereby, inhibition of
apoptosis.111 On the other hand, it should be reminded that
in many cell types lysosomes secrete their content after
fusion with the plasma membrane.112 Thus, secretory
lysosomes of cytotoxic lymphocytes contain essential
apoptotic molecules to eliminate virus-infected cells,
namely the membranolytic perforin, and the serine
protease granzyme B; the eventual cell death induced by
granzyme B was found to be caspase-independent.113

Recently, dipeptidyl peptidase I, a lysosomal cysteine
protease, has been found to be essential in the in vivo
processing and activation of granzymes A and B.114

In conclusion, for many years lysosomal enzymes have
been known to be involved (1) in necrotic type of cell lysis
and, (2) in digestion of apoptotic cell residues upon their
phagocytosis by vital neighbours, conceivably involving the
whole plethora of lysosomal enzymes. More recently,
accumulating evidence strongly suggests that lysosomal
cysteine proteases may trigger preparatory steps of cell
suicide; the underlying molecular mechanisms, however,
are not yet elucidated. Nevertheless, diverse or relatively
unspecific signals such as photodamage or lysosomotropic
agents may be mediated to the specific enzyme cascades
leading to coordinated final self-destruction of cells. The
apparent role of lysosomes in programmed cell death adds
support to the view that lysosomes are not simply a
`garbage-disposal-unit' as outlined recently by Luzio et al.55

Furthermore, the role of lysosomal system in programmed
cell death deserves attention in view of their role in
senescence and storage diseases.115

Conclusions

Programmed cell death (PCD) is an essential phenomenon in
normal development and adulthood of multicellular organ-
isms. Cells use different ways for active self-destruction, with
the morphology ranging from apoptosis to autophagic cell
death. Autophagic cell death appears to be activated when
massive removal of cells or cytoplasm is demanded, for
instance by developmental programmes. Autophagy pre-
ceeding cell death may also reflect a cell's adaptive response
to sublethal (non-necrotic) conditions such as nutrient/growth
factor deprivation or cell damage by cytotoxic drugs, hypoxia
etc. A functional link is provided by a number of studies
showing that 3-methyladenine inhibits both, formation of
autophagosomes and the manifestation of cell death
(nuclear collapse). However, so far no causative relationship
between autophagocytosis and eventual cell death has been
established. Nevertheless, some molecular features such as
Ras-signalling, PI3-kinases and the autophagocytosis genes
apg5/ASP and apg6/vps30 (beclin-1) might be assigned to
pathways leading to the morphological appearance of
autophagic cell death and provide promising targets for
further studies. Furthermore, apoptosis and autophagic cell
death are not mutually exclusive phenomena, they may occur
simultaneously in tissues or even, conjointly in the same cell;
both processes may end, if cell residues are not phagocy-
tosed, in secondary necrosis. It should be emphasized, that
programmed cell death appears to be highly conserved during
evolution as it occurs in unicellular organisms,116 in the green
algae Volvox spec regulating the germ-soma dichotomy,117

the slime mold Dicytostelium discoideum15,16 and, last but not
least, in plants (see a series of reviews published in Cell Death
and Differentiation 4(8), 1997). Golstein and coworkers raised
the hypothesis that a single-core mechanism of PCD that may
have emerged before the postulated multiple emergences of
multicellularity has been raised.15,16 According to this
hypothesis, the phenotypic variations of PCD would result
from differences in enzymatic equipment and mechanical
constraints adjusted to the given biological conditions.

Furthermore, there is sufficient evidence to suggest that
lysosomes are important mediators of programmed cell
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death. Proteases released from the lysosomal compartment
may trigger initiating events of apoptosis. Lysosomes may
also be rate-limiting for the delivery of death receptors to
the cell surface, thereby modulating the sensitivity of cells
to external ligands. Taken together, these observations
strongly suggest that lysosomes, like the mitochondria and
the endoplasmatic reticulum, may play an important part in
apoptosis signalling.
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