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Abstract
Recent evidence indicates that the p53 tumor suppressor
protein, and its related family member, p73, play an essential
role in regulating neuronal apoptosis in both the developing
and injured, mature nervous system. In the developing
nervous system, they do so by regulating naturally-occurring
cell death in neural progenitor cells and in postmitotic
neurons, acting to ensure the apoptosis of cells that either
do not appropriately undergo the progenitor to postmitotic
neuron transition, or that fail to compete for sufficient
quantities of trophic support. Somewhat surprisingly, in
developing postmitotic neurons, p53 plays a proapoptotic
role, while a naturally-occurring, truncated form of p73,
DNp73,antagonizes p53andplaysananti-apoptotic role. In the
mature nervous system, numerous studies indicate that p53 is
essential for the neuronal death in response to a variety of
insults, including DNA damage, ischemia and excitotoxicity. It
is likely that all of these insults culminate in DNA damage,
which may well be a common trigger for neuronal apoptosis. In
this regard, the signaling pathways that are responsible for
triggering p53-dependent neuronal apoptosis are starting to
be elucidated, and involve cell cycle deregulation and
activation of the JNK pathway. Finally, accumulating evidence
indicates that p53 is perturbed in the CNS in a number of
neurodegenerative disorders, leading to the hypothesis that
longterm oxidative damage and/or excitotoxicity ultimately
trigger p53-dependent apoptosis in the chronically degen-
erating nervous system. Cell Death and Differentiation (2000) 7,
880 ± 888.
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The p53 tumor suppressor gene is the most frequently
mutated gene in human tumors. As a tumor suppressor,
p53 plays a key role in DNA damage repair, cell cycle
regulation, and cellular apoptosis. The mechanisms that
underly the ability of p53 to subserve these functions in
cycling, nonneuronal cells have been intensively studied
and are the subject of several recent reviews.1 ± 3 We will
not cover these topics in detail here, but will instead focus
upon the role of p53 in neurons, a cell type that is
`forever' postmitotic, and that must survive and maintain
its genome over as long as a century in humans.
Moreover, we will discuss emerging evidence that the
recently-described p53 family member, p73, also plays a
major role in regulating development and survival in the
nervous system.

The p53 family and developmental
apoptosis in the nervous system

During nervous system development both progenitor cells
and postmitotic neurons are overproduced, and the
nervous system then chooses, through a process of
elimination, those cells that have differentiated and made
appropriate connections. It is now clear that the nervous
system selects cells during two major periods of apoptosis.
The first takes place in the ventricular and subventricular
zones of the developing nervous systems, where neural
stem and progenitor cells differentiate to produce the
neurons and glial cells that will migrate and populate the
brain and spinal cord. It is likely that this period of
apoptosis serves two functions; to eliminate those
progenitors that do not differentiate appropriately, and to
ensure that the appropriate cell number is generated in
rapidly-growing tissues such as the cerebral cortex. The
existence of this period of apoptotic death has only
recently been appreciated, and the mechanisms that
control the life versus death of any given cell are still
only poorly understood.

The second period of apoptotic death in the nervous
system occurs once newly-born neurons have migrated to
their final destinations, have extended their axons, and
have attempted to establish appropriate connections. This
period of naturally-occurring neuronal death eliminates
approximately half of the neurons in any given popula-
tion.4 In the peripheral nervous system, where this
process has been extensively studied, neurons compete
for limiting amounts of target-derived neurotrophins such
as nerve growth factor (NGF), and their ultimate survival
is dependent upon the interplay between receptor-
mediated prosurvival and proapoptotic signals.5 Over the
past several years, evidence has emerged implicating the
p53 family in both of these periods of developmental
apoptosis.
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p53 is essential for the elimination of
neural progenitor cells that fail to
differentiate appropriately

Mice that carry a null mutation in the p53 gene are born and
survive until early adulthood, when they succumb to a variety
of tumors,6 an observation that initially led to the conclusion
that p53 was not involved in development. However, closer
examination revealed that a significant portion of p537/7

embryos developed craniofacial abnormalities and died as a
consequence of an overproduction of neural tissue and failed
neural tube closure (exencephaly),7,8 indicating that p53 was
important in regulating neural development.

Additional evidence supporting a role for p53 in
progenitor cell development came from studies of mice
lacking the retinoblastoma tumor suppressor protein
(pRb).9 ± 11 The Rb7/7 mice die during embryogenesis,
and have a striking nervous system phenotype consisting
of ectopic mitoses and massive neural apoptosis. Further
studies indicated (i) that this phenotype was due to the
inability of newly-born neurons to undergo terminal mitosis
in the absence of pRb,12 ± 14 and (ii) that coincident deletion
of p53 rescued the apoptotic phenotype in the Rb7/7

CNS.15,16 Thus, inappropriate terminal differentiation in the
absence of pRb led to activation of a p53 default apoptotic
pathway. The existence of this p53 apoptotic pathway in
progenitors suggests that a major role for p53 is to
eliminate neural progenitors that fail to differentiate
appropriately. A deficit in this pathway in the p537/7 mice
would provide at least a partial explanation for their
exencephaly.

Insights into other potential players in this progenitor cell
apoptotic pathway derive from recent studies of mice
carrying null alleles in genes that are part of a death
receptor-independent, intrinsic apoptotic pathway.17 This
pathway, which can be activated by p5318 independently of
its transcriptional function,24 involves release of cytochrome
c from the mitochondria, oligomerization and activation of
Apaf-1 and caspase 9, and subsequent activation of
caspase 3 and other effector caspases.17 Remarkably,
animals mutant in each of Apaf1,19,20 caspase 9,21 and
caspase 3,22,23 all display a dramatic overgrowth of neural
tissue during embryogenesis, as a consequence of
decreased progenitor cell apoptosis. Moreover, the
Apaf17/7 mice display abnormalities in craniofacial
structures,19,20 a phenotype also observed in the p537/7

embryos.8 These data therefore indicate that the intrinsic
apoptotic pathway is critical during neural progenitor cell
development and suggest that p53 is at least partially
responsible for its activation.

An essential role for p53 and p73 during
naturally-occurring sympathetic neuron
death

A potential role for p53 in the apoptosis of postmitotic neurons
was originally suggested by two sets of studies. First, a large
number of studies documented increases in p53 following
neural injury (reviewed below; Table 1). Second, over-
expression of p53 was sufficient to induce the apoptosis of

postmitotic sympathetic,25 hippocampal,26 and cortical27

neurons. Since these original reports, a number of studies
have been published demonstrating that p53 is necessary for
neuronal apoptosis, either following neural injury (reviewed
below; Table 1), or during naturally-occurring neuronal death.
With regard to the latter, the best-characterized example
involves sympathetic neurons of the peripheral nervous
system, which we will focus upon here.

During development, peripheral sympathetic neurons
become postmitotic, extend their axons to appropriate
target tissues, and then about half of these neurons
undergo apoptosis during the first 3 postnatal weeks. The
survival of any given neuron during this period is
determined by its ability to compete for limiting amounts
of target-derived nerve growth factor (NGF).5 NGF binds to
the neuronal TrkA tyrosine kinase receptor, leading to the
activation of a number of survival pathways, the most
important of which is the Ras-PI3-kinase-Akt pathway.28,29

This pathway supports sympathetic neuron survival by
overriding a receptor-mediated apoptotic signaling cascade
that originates from a second neurotrophin receptor, the
p75 neurotrophin receptor (p75NTR).28,29 Genetic support
for this model derives from the findings that (i) all
sympathetic neurons die in the TrkA7/730 and NGF7/731

mice, (ii) naturally-occurring sympathetic neuron death is
greatly delayed in p75NTR7/7 mice,32 and (iii) the
coincident deletion of p75NTR rescues the sympathetic
neuron death in the TrkA7/7 mice (M Majdan and F Miller,
unpublished observations). Thus, sympathetic neurons are
`destined to die' as a consequence of an ongoing, p75NTR-
mediated apoptotic signal, and survive only if they
sequester sufficient NGF to robustly activate TrkA.

A number of recent studies indicate that p53 and the
related p73 play a key role in regulating the survival of
sympathetic neurons during this developmental period.
First, overexpression of p53 is sufficient to cause the
death of sympathetic neurons in the presence of NGF.25

Second, Vogel and Parada33 demonstrated that embryonic
p537/7 sympathetic neurons showed enhanced survival in
culture in the absence of NGF, their obligate survival factor.
Third, Aloyz et al 34 demonstrated that p53 levels increased
when sympathetic neurons underwent apoptosis in re-
sponse to either NGF withdrawal or activation of p75NTR,
and that apoptosis could be inhibited if this increase in p53
levels was prevented. Moreover, developmental sympa-
thetic neuron death was delayed (but not prevented) in the
p537/7 mice.34 Thus, p53 is important in an apoptotic

Table 1 p53 is upregulated in response to many types of neural damage, and
is necessary for the subsequent neuronal apoptosis

p53
upregulation

Necessity for
p53 in

apoptosis

Excitotoxicity
Ischemia/hypoxia
Adrenalectomy
Traumatic brain injury
Dopamine-induced death

Yes50,52 ± 59,64

Yes60 ± 65,67 ± 70,72,73

Yes77,78

Yes70,72 ± 76

Yes79

Yes50,53

Yes66

Yes78

ND
ND

ND=not done
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signaling cascade that is activated following NGF with-
drawal or p75 neurotrophin receptor activation.

What is this apoptotic signaling cascade? Evidence
indicates that NGF withdrawal activates at least two
apoptotic signaling pathways, both of which may converge
onto p53 (Figure 1). One of these pathways, which is also
activated by p75NTR, involves JNK-p53-Bax.34,35 MEKK
and JNK function upstream of p53 in p75NTR-mediated
apoptosis,34 while cdc42/Rac1,36 Ask1,37 MKK, JNK, c-
jun,38 ± 40 and p5334 have been shown to act in a signaling
pathway regulating NGF withdrawal-induced apoptosis.
TrkA can silence the JNK-p53 arm of this pathway via
Ras activation.29,41 A second pathway shown to be
important for NGF withdrawal involves the activation of
the cell cycle regulatory molecules CDK4/6, which activate
pRb by phosphorylation, and subsequently cause sympa-
thetic neuron apoptosis.42,43 Since pRb dysregulation (i) is
known to cause p53 activation via p19ARF in nonneuronal
cells,44 and (ii) leads to p53-dependent apoptosis in the
embryonic nervous system (reviewed above), then it follows
that this cell cycle pathway might also converge onto p53. If
this were the case, then p53 would play a pivotal role in
integrating neuronal apoptotic stimuli, perhaps thereby
ensuring that apoptosis ensues only when these stimuli
reach a certain critical threshold (Figure 1).

Surprisingly, the p53 family member p7345 ± 47 also plays
an essential role in this system, but whereas p53 is
proapoptotic, p73 is anti-apoptotic. A recent study by
Pozniak et al 48 indicates that the predominant isoform of
p73 in the developing brain and sympathetic ganglia is
truncated at the amino-terminus (DNp73), and lacks the
transactivation domain.49 Levels of DNp73b are high in
sympathetic neurons when they are maintained in NGF, but
decrease dramatically when NGF is withdrawn; if this
decrease is prevented by ectopic expression of DNp73,
neurons are rescued from apoptosis. Moreover, in p737/7

mice,49 developmental sympathetic neuron death is
enhanced, indicating an essential anti-apoptotic role for
p73 in these neurons. How does DNp73 inhibit sympathetic
neuron apoptosis? DNp73 can directly bind to p53, at least
in vitro, and can rescue p53-mediated death of sympathetic
neurons.48 Thus, one mechanism whereby DNp73 might
inhibit apoptosis is by binding to p53 and inhibiting its
proapoptotic actions (Figure 1).

Does p73 play a similar anti-apoptotic role in other
populations of developing or mature neurons? Although
this question has not yet been answered, the phenotype
of the p737/7 mice indicates that p73 is essential for
normal neural development.49 These mice display
hippocampal dysgenesis, absence of certain neuronal

Figure 1 The role of p53 and p73 in developmental neuron death. Naturally-occurring sympathetic neuron death is regulated by the balance of signals deriving
from the NGF/TrkA prosurvival receptor and the proapoptotic, p75 neurotrophin receptor.5,28,29 Withdrawal of the survival ligand, NGF, or activation of the p75
neurotrophin receptor trigger two apoptotic signaling cascades, the JNK pathway and cell cycle deregulation, both of which are essential for neuronal apoptosis.
P53 plays an essential proapoptotic role in this process, while a naturally-occurring truncated p73 isoform, DNp73, plays an essential anti-apoptotic role, potentially
by antagonizing p53. A more extensive discussion of these pathways is found in the text
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subtypes in both the central and peripheral nervous
systems, and many die showing greatly enlarged
ventricles and decreased cortical tissue. Although there
are several potential explanations for these phenotypes,
they could be explained by the absence of an anti-
apoptotic activity in selected populations of CNS neurons
and/or progenitors. Moreover, the truncated form of p73b
that is predominantly observed in the developing brain48

is generated from the same gene as the full-length,
proapoptotic form of p73 by alternative promoter usage,49

providing a mechanism for rapidly altering the ratios of
the proapoptotic versus anti-apoptotic isoforms of p73 in
the nervous system. In this regard, one potential
explanation for the partial penetrance of the neural
phenotype observed in the p537/7 embryos is that p73
may be able to compensate for the absence of p53 in the
nervous system, at least with regard to developmental
apoptosis. p73 may also play a role in differentiation; a
recent publication132 indicates that full-length p73 causes
differentiation of neuroblastoma cells, a finding that may
well have implications for neural development.

p53 and neuronal injury: p53 mediates
neuronal apoptosis in response to DNA
damage

The apoptotic mechanisms underlying p53-mediated apopto-
sis in injured neurons are perhaps best-understood in the
case of DNA damage. These studies have not only shed light
on intracellular mechanisms that become increasingly
important in long-lived cells, but have also provided insights
into the neuronal apoptosis observed in acute injury and some
forms of neurodegeneration. In this regard, we will discuss
first the mechanistic insights gained studying DNA damage in
neurons, and then the implications that these have for the
traumatized nervous system.

A large body of work indicates that almost any DNA-
damaging agent can cause the apoptosis of postmitotic
neurons, including sympathetic, cortical, hippocampal and
cerebellar neurons, and that in all cases this apoptosis is
dependent upon p53 (Table 1). Examples include ionizing
radiation,80 ± 82 cytosine arabinoside (araC),83 ± 86 DNA
topoisomerase II inhibitors such as etoposide,81 cispla-
tin,87 and the topoisomerase I inhibitor camptothecin.88

Recent studies indicate that this activity is essential for the
nervous system; absence of the DNA repair protein XRCC4
led to a massive neural apoptosis, presumably as a
consequence of the accumulated DNA damage, and this
apoptosis was rescued by coincident deletion of p53.89

How does DNA damage cause the activation and
stabilization of p53? This question has perhaps been best
answered for camptothecin-induced death of cortical
neurons (Figure 2), but similar findings have been reported
in other systems. Camptothecin leads to a rapid phosphor-
ylation of pRb and p107,90 and increased levels of p53.
This increase is likely to be at least partially mediated via a
CDK4/6-pRb-E2F-p53 pathway, since camptothecin-in-
duced apoptosis can be inhibited by dominant-inhibitory
CDK4 or 691,92 and dominant-inhibitory DP1,90 a binding
partner for E2Fs.93,94 Moreover, both ionizing radiation-

induced death of hippocampal neurons26 and camptothe-
cin-induced death of cortical neurons90 can be partially
rescued by expression of a pRb mutant lacking phosphor-
ylation sites, including the CDK4/6 site. Once p53 levels
are increased, this in turn results in increased Bax levels
and caspase activation; these downstream events are
eliminated in p537/7 neurons.95 The activation of Bax is
essential for apoptosis in response to both ionizing
radiation96 and camptothecin.95 However, caspase inhibi-
tors either have no or limited effects, suggesting the
possibility of caspase-independent apoptosis downstream
of Bax.97,98 That these alterations are essential for p53-

Figure 2 p53 is essential for neuronal apoptosis in response to DNA
damage, excitotoxicity, and oxidative damage. Both oxidative damage and
excitotoxicity cause DNA damage, and both cause neuronal apoptosis via a
p53-dependent mechanism. DNA damage activates at least three signaling
pathways, a cell cycle pathway, the JNK pathway, and ATM/CHK2, all of which
are involved in the subsequent neuronal apoptosis. These pathways may be
distinct from each other (as shown), or they may intersect upstream of p53. A
more extensive discussion of these pathways is found in the text
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mediated apoptosis is further supported by a recent study
showing that the apoptosis observed following ectopic
overexpression of p53 was abolished in Bax7/7 cerebellar
granule neurons, and reduced in caspase 37/7 neurons.99

A second potential mechanism for stabilization of p53 in
response to DNA damage involves the product of the ataxia
telangiectasia mutated (ATM) gene.100 AT is characterized
by a spectrum of disorders, including progressive neuro-
degeneration that is most pronounced in the cerebellum.
ATM is required for p53 stabilization in response to DNA
damage,101 and can phosphorylate p53.102,103 The
importance of this interaction in neurons derives from
recent reports by McKinnon and colleagues101,104 who
show that ionizing radiation is unable to induce neural
apoptosis in ATM7/7 mice, a phenotype similar to that
seen in p537/7 mice.101 Moreover, the increase in p53 that
is observed following ionizing radiation in wild-type mice is
absent in ATM7/7 mice, leading to the conclusion that
ATM is upstream of p53. Interestingly, the Bax7/7 mice
display a similar resistance to ionizing radiation,104

supporting the existence of an ATM-p53-Bax pathway
(Figure 2). The recently-identified checkpoint kinase CHK2
is another potential player in this pathway; like ATM, CHK2
is required for p53 stabilization and apoptosis following
ionizing radiation,105 supporting the notion that interactions
between all three of these proteins are necessary for an
appropriate DNA damage response.106 The point at which
the CDK4/6-pRb-E2F1-p53 pathway intersects with the
ATM/CHK2-p53 pathway in regulating neuronal apoptosis
has not been defined (Figure 2).

Interestingly, the DNA damage-induced apoptosis of
neurons can be rescued by growth factors. TGFb rescues
ionizing radiation-induced apoptosis of hippocampal neu-
rons,26 and NGF and BDNF rescue araC and camptothe-
cin-induced apoptosis of sympathetic107 and cortical
neurons,108 respectively. In these latter two situations, the
rescue is mediated as a consequence of Trk receptor-
mediated activation of MEK.

An essential role for p53 in neuronal
apoptosis due to excitotoxicity and
ischemia

The first indication that p53 might be important for neuronal
apoptosis following ischemia or excitotoxicity came from
studies showing that p53 levels increased in response to
these insults (Table 1). A similar elevation of p53 was
observed in response to dopamine-neurotoxicity,79 traumatic
brain injury,73 and adrenalectomy,77 the latter of which causes
selective apoptosis of hippocampal granule cells (summar-
ized in Table 1). In many of these injury paradigms, p53 is
essential for apoptosis (Table 1). Of particular interest are
studies demonstrating (i) that kainate was able to induce
death of p53+/+ but not p537/7 cortical and hippocampal
neurons, even though intracellular calcium was elevated to
the same degree in both populations of neurons,50 and (ii) that
kainate-induced seizures led to significant apoptosis in p53+/+

but not p537/7 mice.52 These studies definitively established
that p53 was an essential downstream component of NMDA
receptor-mediated excitotoxicity. Similar studies have con-

firmed that p53 is also essential for neuronal apoptosis
following ischemia,65 adrenalectomy,78 and hypoxia.72

What is the molecular mechanism linking excitotoxin
exposure to p53 activation? A number of lines of evidence
indicate that it likely involves DNA damage. First,
excitotoxicity may be associated with the accumulation of
single-strand DNA breaks.109 Second, the alterations
downstream of excitotoxicity are similar to those down-
stream of DNA damage in the same neurons. For example,
in cortical neurons, excitotoxicity-induced apoptosis is
blocked in Bax7/7 neurons,95 as it is in p537/7

neurons,50 and there is little or no inhibition of this
apoptosis with caspase inhibitors,97,98 findings very similar
to those observed for camptothecin.97,98 One potential
difference between these two pathways is upstream of p53;
kainate-induced apoptosis is inhibited in JNK37/7 mice,110

but camptothecin-induced neuronal apoptosis is thought to
be triggered by a CDK4/6-pRb-E2F-p53 pathway (Figure 2).
However, a recent report indicates that DNA damage-
i n d u c e d a p o p t o s i s i s i n h i b i t e d i n J N K 17 /7 ,
JNK27/7 cells,111 suggesting either that there are two
pathways to p53 following DNA damage, as there are
following growth factor withdrawal (Figure 1), or that these
two pathways intersect upstream of p53.

These findings suggest that the formation of DNA strand
breaks is a key molecular event linking excitotoxic injury
and the induction of apoptosis. How does this occur?
Accumulating evidence has invoked a role for oxidative
damage in the response to neuronal damage and,
potentially in the degeneration of neurons in neurodegen-
erative diseases (discussed below). In this regard,
glutamate receptor activation leads to the generation of
reactive oxygen species.112,113 Reactive oxygen species
are known to induce DNA strand breaks, and exposure of
neurons to reactive oxygen species leads to neuronal
apoptosis.114 ± 117 Enhancement of p53 expression has
been observed in numerous cell types following exposure
to reactive oxygen species.118 Moreover, p53 is essential
for neuronal apoptosis after exposure to stimuli that
increase reactive oxygen species, such as ionizing
radiation.80,81 Taken together, these data suggest that
any form of neuronal injury that produces an excess of free
radicals, such as excitotoxic insults, could generate DNA
strand breaks, which in turn could provide a signal for
stabilizing and activating p53.

Is p53 involved in neurodegeneration?

Together, the aforementioned studies make a strong case
that p53 is likely to be involved in the acute neuronal
apoptosis that is observed following stroke or traumatic brain
injury. However, the evidence implicating p53 in chronic
neurodegeneration is largely indirect, and can be summarized
as follows. First, p53 is increased in appropriate regions in the
brains of individuals suffering from a number of neurodegen-
erative disorders.119 ± 121 For example, p53 is increased in the
temporal and frontal lobes of brains from Alzheimer's disease
(AD) patients, in the spinal cord of ALS patients, and in the
striatum of Parkinsons disease patients.121 Although there is
as yet some controversy as to whether this increase is
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localized to neurons and/or glial cells, it is clear that p53 is
elevated. Second, there is accumulating evidence that some
neurodegenerative conditions involve oxidative or excitotoxic
mechanisms,122 ± 125 both of which would be predicted to
cause DNA damage, and to potentially lead to p53-dependent
apoptosis. For example, nitric oxide has recently been
invoked in the motor neuron apoptosis observed in both
familial and sporadic ALS.126 Finally, it is clear that any
situation that leads to an increase in the DNA mutation load in
neurons is likely to lead to neuronal death. In this regard,
cancer chemotheraphy with agents such as cisplatin87 might
trigger both short-term and long-term p53-dependent neuro-
nal apoptosis. Alternatively, mutations that interfere with the
repair system itself would be predicted to increase the
mutation load, and potentially lead to a chronic and
progressive neurodegeneration. The best example of this is
the neurodegenerative disorder AT;100 it is likely that the
inability to repair DNA using the ATM/p53 system ultimately
causes neurodegeneration in a p53-independent fashion. In
support of this idea, a recent study indicates that there is
chronic and progressive neurodegeneration in the p537/7

mice.127 Although this finding may seem counterintuitive, it is
likely that the inability to properly scan and repair DNA in the
absence of p53 would ultimately lead to a nonfunctional
neuron that would die by a p53-independent mechanism.

Of the few experimental studies exploring the role of p53
in neurodegeneration, most are focused upon AD. In one
study, Xu et al 128 demonstrated that transfection of wild-
type amyloid precursor protein (APP) into neuroblastoma
cells was sufficient to rescue them from apoptosis induced
by UV irradiation or by p53 itself. However, a mutant form
of APP found in familial Alzheimer's had no effect, leading
to the hypothesis that APP protects neurons from apoptosis
by controlling p53 and that mutations in APP could
enhance neuronal vulnerability to p53-mediated apoptosis.
In a second study, LaFerla et al 129 examined a transgenic
mouse expressing beta-amyloid protein (Abeta) in neurons,
and found a correlation between Abeta accumulation in
neurons, activation of p53 and DNA fragmentation. Both of
these studies would predict that the elevated p53 found in
AD cortex might be important in the neurodegeneration.
Arguing against this conclusion are two studies reporting
that Abeta-mediated apoptosis did not require p53.130,131

Together, these studies highlight the difficulties of
ascertaining the involvement of a given signaling pathway
in human neurodegeneration. Nonetheless, the accumulat-
ing evidence that oxidative stress and excitotoxicity lead to
p53-dependent apoptosis, and that perturbations in DNA
repair can also lead to longterm neuronal degeneration,
provide a strong argument for pursuing the potential
involvement of p53 in a set of debilitating degenerative
diseases for which we currently have no treatment.
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