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Abstract
In the present review activities of two bacterial toxins,
Clostridium botulinum exoenzyme C3 and Escherichia coli
CNF1, both acting on the GTP-binding protein Rho are
analyzed. Proteins belonging to the Rho family regulate the
actin cytoskeleton and act as molecular switches in a number
of signal transduction pathways. C3 and CNF1 have opposite
effects on Rho thus representing useful tools for studies on
cell division, cell differentiation and apoptosis.
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Introduction

Almost 10 years separate the discovery of a toxin which
exerts an inhibitory activity on the p21 Rho small GTPase: the
Clostridium botulinum exoenzyme C3 (Aktories et al, 1987;
Rubin et al, 1988; Chardin et al, 1989) from that of a toxin
which activates the same GTP-binding protein: the cytotoxic
necrotizing factor 1 (CNF1) from Escherichia coli (Flatau et al,
1997; Schmidt et al, 1997). Exoenzyme C3 and CNF1 are
now major tools for laboratories working on the actin
cytoskeleton and signal transduction.

Aims of the present review are (i) to analyze the activities
of these two bacterial toxins having opposite effects on the
GTP-binding protein Rho; and (ii) to examine how these
toxins can provide clues for explaining roles played by Rho
in cell division, cell differentiation or apoptosis.

The GTP-binding protein Rho: a target for
bacterial toxins

Rho protein (Madaule and Axel, 1985), discovered shortly
after Ras (Chang et al, 1982), and YPT1 (a Rab-like GTPase
from Saccharomyces cerevisiae) (Gallwitz et al, 1983), belong
to a family of regulatory molecules now grouped under the
name of `Ras superfamily'. This superfamily encompasses
three main groups of proteins: Ras, Rho and Rab which differ
according to their sequence homology and their function. A
certain number of other GTP-binding molecules (Arf and Ran)
which harbour similarities with Ras are now linked to this
superfamily of proteins (Zerial and Huber, 1995). The Ras
group (Ras, Rap and Ral) is implicated in signal transduction
of mitogenic signals, the Rho, Rac and Cdc42 subgroup
regulates the F-actin cytoskeleton and the Rab subfamily
(Rab 1 to Rab 30) controls intracellular traffic (Downward,
1990). Small GTP-binding proteins are under an active form,
and are thus able to trigger a cascade of signalling events
when they are associated with GTP. Linked to GDP, they are
in the resting state. An activated small GTP-binding protein
becomes inactive by hydrolyzing GTP into GDP. GTP
hydrolysis by small GTP-binding proteins alone is normally
exceedingly slow. In association with a protein named
GTPase activating protein (GAP), GTP hydrolysis is very
rapid. Activation of small GTP-binding proteins is due to the
removal of their bound GDP. The protein which performs this
task is the guanine exchange factor (GEF). The simple
removal of GDP from the small GTP-binding protein allows
binding of GTP since there is a large excess in cells of GTP
over GDP. Two polypeptide domains change their conforma-
tion in small GTP-binding proteins when the molecule is
associated either with GTP or GDP. These polypeptides are
called switches (Milburn et al, 1990). Switch 1 (residues 30 to
39 in Ras, 32 to 41 in Rho) corresponds to the Ras
polypeptide contacting its downstream effector (in the case
of Ras it is Raf) whereas switch 2 (residues 60 to 76 in Ras, 62
to 78 in Rho) is implicated in the GTP to GDP hydrolysis.

Rho is mostly localized in the cytosol, associated with a
molecule (guanine dissociation inhibitor GDI) which
maintains its conformation in the inactive form (linked to
GDP) (Fukumoto et al, 1990). When a growth factor
(derived from a lipid, lysophosphatidic acid (LPA)) binds
to its receptor (belonging to a family of receptors acting
through heterotrimeric G proteins), it activates Rho via the
Rho exchange factor at the level of the membrane. This
mechanism and its precise localization are still poorly
elucidated. Activated-Rho has two main targets for the
regulation of the actin cytoskeleton: a serine-threonine
kinase named Rho kinase (ROK) (Matsui et al, 1996;
Ishizaki et al, 1996) and a kinase inducing, by phosphory-
lation (on position 5 of the inositol ring), the formation of
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phosphatidyl-inositol-4,5-phosphate (PIP2) from phosphati-
dyl inositol 4 phosphate (PI4-P) (Chong et al, 1994; Ren et
al, 1996). By regulating these two kinases, Rho might
control the actin cytoskeleton by three mechanisms: (i) by
acting on Rho kinase, it will provoke the bundling of actin
filaments by directly (Amano et al, 1997) or indirectly (via
phosphorylation of the myosin light chain phosphatase
resulting in the inhibition of this enzyme) (Kimura et al,
1996) phosphorylating the myosin type 2 light chain
allowing these molecules to associate with actin filaments
and thereby provoking contractility (Fujihara et al, 1997); (ii)
by locally raising the PIP2 concentration, Rho activates
molecules bridging actin filaments and cell membrane-
associated proteins such as vinculin (Gilmore and Burridge,
1996) ezrin, moesin or radixin (ERM group) (Hirao et al,
1996) and (iii) probably by provoking a PIP2 dependent
actin polymerization (as described for Rac; Hartwig et al,
1995) by uncapping actin filament barbed ends (where
addition of new actin subunits occurs). By these three
mechanisms, Rho will allow extension of the cell surface
(also called cell spreading). According to Cramer and
Mitchison (1995), cell spreading results from actin
polymerization at the cell periphery but also from the
association of actin and myosin which induces cell
contractility.

Rho also induces, by a mechanism implicating ezrin (a
protein belonging to the ERM group), the formation of focal
adhesion contacts (Mackay et al, 1997). Focal contacts are
structures by which cells are anchored to the extracellular
matrix (ECM) via integrins. As we will see below, anchoring
to ECMs through integrins is an indispensable step for the
generation of intracellular signals leading to multiplication,
differentiation or apoptosis.

In addition to activities on cell spreading and formation of
focal contacts, Rho exhibits other functions. One is relative
to the regulation of endocytosis. Rho-GTP has an inhibitory
effect on the formation of clathrin-coated vesicles,
implicated in receptor-mediated endocytosis (Lamaze et
al, 1996). Conversely, Rho-GTP seems to favour pinocy-
tosis (Schmalzing et al, 1996), another system of
endocytosis, but requiring no clathrin coat. Another
additional function of Rho is its activity in the progression
of cell cycle (Olson et al, 1995).

How can toxins acting on Rho give us clues concerning
the role of these GTP-binding proteins in cell regulation?
We will describe first the structure and function of two
toxins acting on Rho, exoenzyme C3 from C. botulinum and
CNF1 from E. coli. Then we will examine the cell activities
of these toxins.

Exoenzyme C3 and CNF1: two bacterial
toxins with opposite effects on the
GTP-binding protein

C3 is produced by some strains of C. botulinum (serotypes C
and D) in addition to C2 toxin and neurotoxins (Rubin et al,
1988). C3 is not a true toxin but the 25 kDa enzymatic moiety
of a toxin. C3 activity on whole cells is difficult to assay since it
cannot enter directly into the cytosol. To obviate this problem
several toxins, called chimeric, have been prepared by

genetic fusion associating C3 with the cell binding and
membrane translocating polypeptides of diphtheria or
Pseudomonas aeruginosa exotoxin A (Aullo et al, 1993;
Boquet et al, 1995). Exoenzyme C3 is an ADP-ribosyltrans-
ferase which hydrolyzes NAD into ADP-ribose and nicotina-
mide and covalently links ADP-ribose to Rho Asparagine 41.
Although asparagine 41 of Rho is in the switch 1 region
(effector domain of Rho) (Sekine et al, 1989), it does not
modify the architecture of the Rho effector domain sufficiently
to block the interaction of Rho with the downstream effector
ROK. However, ADP ribosylation of Rho blocks the
translocation of Rho to the membrane resulting in the
inhibition of Rho activity (Fujihara et al, 1997) (Figure 1).

CNF1 is a 110 kDa toxin produced by certain pathogenic
strains of E. coli (Donelli and Fiorentini, 1997). This toxin
causes necrosis when injected in rabbit skin and multi-
nucleation in cultured cells (Caprioli et al, 1983). In cultured
cells, the toxin mainly induces the formation of actin stress
fibers and promotes cell spreading (Fiorentini et al, 1988,
1995) mimicking effects obtained by microinjection of the
dominant active mutant of Rho (Paterson et al, 1990).
CNF1 acts on Rho by a new mechanism for a bacterial
toxin. Indeed, CNF1 will make Rho permanently active
without the necessity for its interaction with the Rho
exchange factor. After CNF1 modification, Rho loses its
ability, both intrinsic or mediated by GAP, to hydrolyse GTP
into GDP.

The loss of ability of Rho and RhoGAP to hydrolyse GTP
into GDP is the result of an enzymatically mediated Rho
protein modification, induced directly on the GTP-binding
protein by CNF1. Indeed, CNF1 specifically acts on an
important residue of the Rho switch 2 domain: glutamine 63
(Q63). Rho Q63 corresponds to Q61 of Ras. Glutamine 63
of Rho is implicated in the binding of a water molecule
required for hydrolysis of the GTP gamma phosphate
(Rittinger et al, 1997). Rho Q63 alone cannot stably
maintain the water molecule during the transition state
explaining the poor intrinsic GTP hydrolyzing activity of Rho
(Rittinger et al, 1997). Associated to RhoGAP, which
introduces an arginine residue (GAP arginine 85) close to
Rho Q63, there is stabilization of Rho Q63 for the binding
of the water molecule during the transition state resulting in
a considerable acceleration of GTP hydrolysis (Rittinger et
al, 1997). Q63 is thus a pivotal residue for Rho
deactivation. Mutation of Q63 into another amino-acid
decreases or totally blocks the GTPase activity of Rho
and Rho associated to RhoGAP. We and others have
shown that CNF1 exhibits a catalytic deamidase activity
specific for Rho glutamine 63 (Flatau et al, 1997; Schmidt
et al, 1997). Modification of Q63 to E63 in Rho blocks the
intrinsic and GAP-stimulated hydrolysis of GTP resulting in
the permanent activation of the GTP-binding protein (Flatau
et al, 1997; Schmidt et al, 1997) (Figure 2).

C3 and CNF1 are invaluable tools for
studying how Rho is involved in cell
regulation

C3 effects on cultured cells brought the first indication that
Rho could be implicated in the regulation of the actin
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cytoskeleton. Treatment of cells with C3 (at high concentra-
tions to force the penetration of the enzyme into cells)
induces a selective disorganization of actin stress fibers
(Chardin et al, 1989) (Figure 3). The role of Rho in the control
of cytoskeleton organization was then demonstrated by

microinjection into cells of Rho either mutagenized (to make
it permanently active) or modified in vitro by C3. C3 has been
used to demonstrate that Rho controls smooth muscle
contractility (Fujihara et al, 1997) and very recently it has
been shown that blood pressure could be controlled mostly

Figure 1 Activity of Clostridium botulinum exoenzyme C3 on Rho. C3 is not a toxin, thus it must be injected into the cytosol or introduced by chimeric toxins. Once
in the cytosol C3 ADP-ribosylates Rho, preferentially the GDP bound form, on Rho asparagine 41. ADP-ribosylated Rho is unable to bind the cell membrane (red
dotted line) thus it probably cannot be activated by the Rho GEF. However, in vitro ADP-ribosylated Rho can still bind the Rho downstream target ROK (black
arrow)
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by Rho through blood vessel twitch (Uehata et al, 1997).
Another important phenomenon induced by Rho activity and
demonstrated by utilization of C3 is the inhibitory role of Rho
in an early step of receptor-mediated endocytosis (Lamaze et
al, 1996).

The role of Rho in the regulation of gene transcription
has been analyzed using C3. From these studies it seems
that Rho can control transcription at the level of the
promotor serum responsive element (SRE) via activation of
the serum response factor (SRF) (Hill et al, 1995).

Figure 2 Activity of Escherichia coli CNF1 on Rho. CNF1 is organized into three domains B: cell binding, T: membrane translocation, C: catalytic. After binding to
a membrane receptor, CNF1 is taken up by endocytosis and into an acidic intracellular compartment where the catalytic domain crosses the membrane, aided by
the translocation domain. Once in the cytosol the catalytic CNF1 domain deamidates Rho glutamine 63 (Q63) into Rho glutamic acid 63 (E63). Rho E63 loses its
ability to hydrolyse GTP into GDP in conjunction with RhoGAP. Rho being bound permanently to GTP activates the downstream Rho target ROK giving rise to
stress fiber formation by microfilament bundling
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However, activation of SRF by Rho does not depend on the
MAP kinase or JNK/p38 pathways (Hill et al, 1995). Finally,
C3 is able to block the entry of cells into G1 of the cell
cycle indicating a role for Rho in the G0/G1 step (Olson et
al, 1995).

CNF1 induces effects in cells opposite to those of C3
(Figure 3). It provokes a prominent bundling of actin stress
fibers and multiplication of focal adhesion points (Fiorentini
et al, 1988). This leads to cell spreading by the mechanism
described above. CNF1 induces a large increase in
enzymatic activity of the PI-4 5-kinase (Fiorentini et al,
1997a) but curiously it is not possible to detect in cells an
elevation of the PIP2 concentration (Fiorentini et al, 1997a).
CNF1 also induces phosphorylation of p125FAK kinase and
paxillin which are localized in focal adhesion contacts
(Lacerda et al, 1997) and provokes the relocalization of
myosin type 2 into stress fibers (Fiorentini et al, 1997a).
Recently, it has been shown that a toxin which exhibits an
enzymatic activity identical to that of CNF1 on Rho
(Horiguchi et al, 1997) stimulates the formation of caveolae
(Senda et al, 1997), whereas C3 microinjection into
Xenopus ovocytes blocked selectively the non-clathrin
dependent endocytic pathway (Schmalzing et al, 1996).
Caveolae, whose major protein is caveolin, are small

A

B

C

Figure 3 Confocal fluorescence micrographs of epithelial HEp-2 cells
stained for F-actin. Four different focal plans (from the bottom (1) to the top
(4) of the cell) are shown for each sample. (A) Control cells; (B) cells exposed
to 1079 M C3B (Aullo et al, 1993) for 18 h; (C) cells treated with 10710 M
CNF1 for 48 h. The main morphological effects provoked by these toxins in
epithelial cells are: (B) cell retraction and actin cytoskeleton breakdown by C3,
(C) cell spreading and actin assembly into ruffles and stress fibers by CNF1

Table 1 Comparative cell activities of CNF1 and C3

Activity C3 (ref) CNF1 (ref)

Cell division

Cytokinesis

Stress ®ber
formation

Receptor-mediated
endocytosis

Pinocytosis

Contractility

Focal contact
formation

PIP2 formation

Apoptosis

Substrate

Co-substrate

Amino-acid
modi®ed

Enzymatic activity

inhibits
(Rubin et al, 1988)

inhibits
(Rubin et al, 1988)

inhibits
(Chardin et al, 1989)

activates
(Lamaze et al, 1996)

inhibits
(Schmalzing et al, 1996)

inhibits
(Fujihara et al, 1997)

inhibits
(Aullo et al, 1993)

inhibits
(Chong et al, 1994)

activates
(Henning et al, 1997)

Rho
(Chardin et al, 1997)

NAD
(Chardin et al, 1989)

asparagine 41
(Sekine et al, 1989)

ADP-ribosyltransferase
(Rubin et al, 1988)

activates
(Lacerda et al, 1997)

inhibits
(Caprioli et al, 1983)

activates
(Fiorentini et al, 1988)

?

activates
(Senda et al, 1997)

activates
(Fiorentini et al, 1997a)

activates
(Fiorentini et al, 1988)

activates
(Fiorentini et al, 1997a)

inhibits
(Fiorentini et al, 1998)

Rho
(Flatau et al, 1997)

none
(Flatau et al, 1997)

glutamine 63
(Flatau et al, 1997)

deamidase
(Flatau et al, 1997)
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Figure 4 Possible pivotal role of Rho in cell multiplication, differentiation or apoptosis. Rho-GTP allows cell division by inhibiting receptor-mediated endocytosis
and activating pinocytosis. This promotes filament bundling by both Rho kinase activation (filament bunding) and integrin cross-linking (vinculin activation) through
PIP2 synthesis. Deactivation of Rho allows cell differentiation or apoptosis through microfilament disorganization, inhibition of pinocytosis and activation of
receptor-mediated endocytosis. By permanently activating Rho, CNF1 provokes cell division and inhibits apoptosis. By inhibiting Rho, C3 blocks cell division but
may allow either cell differentiation or apoptosis
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plasma membrane invaginations, which can give rise to
vesicle formation (Parton, 1996). It seems that caveolin can
traffic between the plasma membrane and the trans-Golgi
compartment (Conrad et al, 1995). It is quite well
established that caveolae are privileged sites where
growth factor receptors and molecules implicated in
signalling are concentrated (Lisanti et al, 1994; Simons
and Ikonen, 1997). Rho may thus play an important role in
controlling the steady state between the clathrin coated
vesicles and caveolin endocytic pathways. We have
summarized in Table 1 the cellular activities modulated by
C3 and CNF1.

Is Rho pivotal in driving cells toward
multiplication, differentiation or apoptosis?

Cells which constitute an organism must imperatively attach
to a substrate to multiply and differentiate (Ruoslahti and
Reed, 1994). If conditions for attachment to the extracellular
matrix are not suitable, the cell may induce its own suicide
(Hynes, 1992). In vertebrates, cell adhesion is mainly due to
integrins. There are many different integrins, each of them
recognizing a specific extracellular matrix. Interactions
between integrins and extracellular substrate may induce
proliferation, diferentiation or apoptosis. There are therefore
signalling cascades initiated from integrins and acting at the
level of gene expresion. Integrins act in the signalling cascade
by phosphorylation of protein tyrosine residues (Clark and
Brugge, 1995), allowing the binding of molecules called
adaptors (Pawson, 1995). This allows the binding of other
proteins and initiates a chain of signalling reactions, the best
known being the one linking Ras to MAP kinases implicated in
cell mitogenicity (Wittinghofer and Nassar, 1996).

In order to explain the role played by Rho in cell
regulation we took into account observations on Rho-
dependent cellular effects reported by different groups
using toxins like C3 or CNF1. First, the group of Sandra
Schmidt has shown that Rho, bound to GTP, inhibits the
formation of clathrin coats on the membrane, thus blocking
endocytosis of cell receptors such as transferrin receptors
(Lamaze et al, 1996). The same group has demonstrated
an essential role for endocytosis mediated by growth factor
receptors, such as EGF receptors, in the activation of these
receptors (Viera et al, 1996). To summarize briefly, the
inhibition of EGF receptor internalization stimulates their
cell mitogenic activity, and increases the phosphorylation of
the molecule called shc which can recruit adaptor proteins
(Viera et al, 1996). On the other hand, internalization by
clathrin coated vesicles of these receptors increases their
ability to activate the PI3 kinase (Viera et al, 1996). This
observation may be linked to that made by the group of
Filippo Giancotti who reported that certain integrins induce
cellular multiplication by provoking, through phosphorylation
of tyrosine residues, the activation of the shc molecule
(Wary et al, 1996). Shc then activates, by the Ras pathway,
the MAP kinase cascade thus activating cell division (Wary
et al, 1996). Curiously, however, shc in the Giancotti
experiments was immunoprecipitated together with caveolin
(Wary et al, 1996). The existence of caveolin in the
induction of shc phosphorylation by integrins is explained

by recruitment of both shc and a kinase by caveolae at the
level of focal adhesion points (Wary et al, 1996). As
discussed above, once activated by a CNF1-like toxin, Rho
seems to increase the number of caveolae at the level of
cell surface (Senda et al, 1997). Is it possible that Rho, by
modulating the efficiency of endocytotic pathways together
with its ability to cluster integrins, plays a central role in the
decision of a cell to proliferate, differentiate or commit
suicide? (Figure 4).

Thus, we propose the following scenario: a signal
induced by an extracellular factor (for instance, LPA) will
activate the receptor linked to Rho. Rho will induce in turn
both fasciculation of actin stress fibers through activation of
myosin (Chrzanowska-Wodnicka and Burridge, 1996) and
the binding of actin filament to vinculin, by activation of this
molecule with PIP2 (Gilmore and Burridge, 1996) thus
allowing clustering of integrins (Chrzanowska-Wodnicka
and Burridge, 1996). This mechanism will ensure the
activity for signalling on an extracellular matrix. Concomi-
tantly activated-Rho will increase the traffic and synthesis
of caveolae (Senda et al, 1997) bringing shc and tyrosine
kinases to the level of integrins (Wary et al, 1996).
Moreover, it will inhibit the formation of clathrin coated
vesicles (Lamaze et al, 1996) forcing receptors implicated
in the control of mitogenicity to remain at the cell surface
thus increasing their capacity to stimulate cell division
(Viera et al, 1996).

After the arrest of the activating Rho signal, the Rho
cascade will stop and the integrins will be dispersed by
myosin light chain dephosphorylation and by the unbinding
of vinculin on actin filaments. A new signal (required for
differentiation) activating a regulatory cascade different
from that of Rho will provoke the binding and clustering
of a new set of integrins and the binding to a new
extracellular matrix. Once Rho is deactivated, the endocy-
totic pathway mediated by clathrin will regain its activity and
the receptors implicated in the mitogenicity will be inhibited
by their own endocytosis. However, activation of the PI3
kinase by receptors, due to endocytosis (Viera et al, 1996),
might stimulate new cascades of signalling such as those
of Rac and Cdc42. This will be the case, for instance, if the
new set of integrins recognize an extracellular matrix
required for cell differentiation. On the other hand, if this
extracellular matrix was not produced, the cascade of p38
kinases ending in apoptosis will be triggered by Rac or
Cdc42 (Xia et al, 1995) to avoid a phenotypic error or an
abnormal cellular multiplication. According to our model,
activation of Rho will protect against apoptosis whereas
inhibition of this GTP-binding protein, together with certain
stimuli, will result in cell death. In agreement with this
model, it has been shown that inhibition of Rho either by
C3 (Bobak et al, 1997) or by Clostridium difficile toxin B
(Gomez et al, 1997) is able to induce apoptosis in different
cell types, whereas CNF1, by activating Rho, increases
Bcl-2 expression and strongly protects against UVB
induced apoptosis (Fiorentini et al, 1997b, 1998). Accord-
ingly, when the exoenzyme C3 gene was expressed under
the control of a T cell differentiation promotor, thymic cells
from transgenic mice underwent apoptosis (Henning et al,
1997). In contrast with this view, it has been reported, for
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example, that transfection of the dominant active version of
Rho (Rho val 14) into 3T3 cells growing in the absence of
serum was able to induce apoptosis (Jimenez et al, 1995).
Further studies should be undertaken to solve this
controversy.

A mitogenic signal must induce strong and constant
phosphorylation to induce proliferation. The double signal
from stimulated integrins and growth factor receptors
activating the MAP kinase pathway, will explain the strong
and sustained phosphorylation required for the entry of
cells into the cell cycle. In our model, Rho might have no
activating role per se on transcription, as demonstrated for
Ras, Rac and Cdc42, but could play a role by coordinating
the actin cytoskeletal organization together with the
endocytic traffic in order to modulate the activity of certain
kinases. In keeping with this model it seems that Rho
exerts a permissive but not decisive effect on MAP kinase
activation (Frost et al, 1996).

Conclusions

Bacterial toxins acting on the GTP-binding protein Rho, such
as C3 and CNF1, are invaluable tools to study the functions of
this regulatory protein whose pivotal role in cell homeostasis
is becoming more and more evident.

The discovery that a bacterial toxin such as CNF1
(produced by pathogenic bacteria found in human and
animal infections) induces an amino-acid modification
which activates a small GTP-binding protein of the Ras
superfamily leads us to pose the following provoking
question: might certain tumors have an infectious origin?
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