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Small drops can bounce indefinitely on a bath
of the same liquid if the container is oscillated
vertically at a sufficiently high acceleration1.
Here we show that bouncing droplets can be
made to ‘walk’ at constant horizontal velocity
on the liquid surface by increasing this acceler-
ation. This transition yields a new type of local-
ized state2–5with particle–wave duality: surface
capillary waves emanate from a bouncing drop,
which self-propels by interaction with its own
wave and becomes a walker. When two walkers
come close, they interact through their waves
and this ‘collision’ may cause the two walkers to
orbit around each other6-8. 
The bouncer transition to walking is contin-
uous and occurs when the vertical acceleration
of the bath, m, reaches a critical threshold, m

c.
Below m

c, the drops bounce with no horizon-
tal motion. Above m

c, bouncing drops acquire
a rectilinear motion along the surface of the
bath (Fig. 1a–c). Their velocity Vwis constant
(0–20 mm s1) and increases with m. 
Why do the drops start walking? This phe-
nomenon occurs below, but near, the onset of
the Faraday instability, a point at which the
surface becomes spontaneously wavy. In this
regime, the vertical motion of a drop becomes
subharmonic, with a period that is double that
of the forcing. As a result, it emits a damped
Faraday wave. The drop undergoes successive
identical parabolic jumps that are locked with
its wave. Each jump brings the drop into colli-
sion with the side of the central bulge of 
the wave generated by the previous collision
(Fig. 1a). This collision with an inclined surface
generates a non-zero horizontal impulse, which
can be translated as an equation for the drop’s
horizontal motion, averaged over a period
/0of the subharmonic vertical motion

md2x/dt2 asin{(k/0) dx/dt} bdx/dt(1)

where mis the drop’s mass, ais about 106N, k
is the wavenumber, and bis about 106Nm 1s.
The left-hand side of equation (1) represents
the inertia of the drop; the first term on the
right-hand side accounts for the effective force
due to the inclined surface, and the second for
viscous damping during the collision. Equation
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Walking and orbiting droplets
(1) predicts the observed continuous transi-
tion of the droplet from stationary to walking
when a b0/(k).
When walkers coexist in a cell, they
inevitably collide. These ‘collisions’ do not
involve any contact between the drops but only
a deflection of their horizontal trajectories,
when the wave generated by a drop affects the
horizontal velocity of the other one. The main
parameter characterizing this collision is dc,
the minimal distance of approach of the two
drops; depending on the value of dc,the walk-
ers either attract or repel each other. Attraction
leads to a twin-star-like orbiting motion of the
drops (Fig. 1d, and see movie in supplementary
information). The diameters of the orbits take
discrete values dn

orb, which self-adapt to the
forcing frequency9,10. The orbital diameters are
slightly smaller than an integer multiple of the
Faraday wavelength (F), or dn

orb (n )F
when the drops bounce in phase. They are
dn
orb (n 1/2 )Fwhen the drops bounce
in antiphase; the offset, 0.2 0.02, is such
that when a drop collides with the surface, it
falls on the inward slope of the wave emitted by
the other. This provides the centripetal force
needed for the orbital motion. For other values
of dc, each drop falls on the outward slope of
the wave of the other, which causes a repulsion. 
We have shown that walkers can behave as
billiard balls, undergo scattering collisions or
form circular orbits, and can even display com-
plex three-body motion (results not shown).
The variety of these phenomena can be
explained by interaction through waves and by
generalizing equation (1) to two or more drops
(the resulting equations yield the same quan-
tification of orbits and numerical trajectories,
which are very similar to the experimental col-
lisions; S. P. et al., manuscript in preparation). In
this system, real particles experience the same
non-local interaction as nonlinear waves.
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Figure 1 | Behaviour of silicon oil droplets on a bath
of silicon oil when it is oscillated vertically.
Experimental parameters: oil viscosity,
20 103Pa s; forcing frequency, 0/2 80 Hz,
diameter of droplets D 0.65 mm; forcing
acceleration, m/g3.9 (where gis the acceleration
due to gravity). a–c, Photographs showing the
motion of a single drop in interaction with its own
localized Faraday wave on the liquid surface. The
drop’s motion is composed of a series of identical
parabolic jumps, each jump bringing the drop into
collision with the forward side of the central bulge
of the wave generated by the previous collision.
d,Photograph of two orbiting drops and
associated waves. The horizontal motion is in 
a twin-star-like orbit of diameter dn 5.8 mm. 
(For movies, see supplementary information.)
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