Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1

Abstract

Growing axons are guided by both diffusible and substrate-bound factors1,2,3. Growth cones of retinal neurons exhibit chemoattractive turning towards the diffusible factor netrin-1 in vitro4 and are guided into the optic nerve head (ONH) by localized netrin-1 (ref. 5). Here we report that, in Xenopus, laminin-1 from the extracellular matrix (ECM), converts netrin-mediated attraction into repulsion. A soluble peptide fragment of laminin-1 (YIGSR) mimics this laminin-induced conversion. Low levels of cyclic AMP in growth cones also lead to the conversion of netrin-induced attraction into repulsion6, and we show that the amount of cAMP decreases in the presence of laminin-1 or YIGSR, suggesting a possible mechanism for laminin's effect. At the netrin-1-rich ONH, where axons turn sharply to leave the eye, laminin-1 is confined to the retinal surface. Repulsion from the region in which laminin and netrin are coexpressed may help to drive axons into the region where only netrin is present, providing a mechanism for their escape from the retinal surface. Consistent with this idea, YIGSR peptides applied to the developing retina cause axons to be misdirected at the ONH. These findings indicate that ECM molecules not only promote axon outgrowth, but also modify the behaviour of growth cones in response to diffusible guidance cues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Laminin-1 converts netrin-1-induced growth-cone attraction into repulsion.
Figure 2: YIGSR mimics laminin-1 and causes repulsive turning in netrin-1 gradients.
Figure 3: Opposite netrin-1-induced turning behaviours of single growth cones with and without YIGSR peptide.
Figure 4: Laminin-1 and YIGSR reduce cAMP levels in retinal growth cones.
Figure 5: Exogenous YIGSR induces defects at the ONH where endogenous distribution of laminin-1 and netrin-1 is spatially discrete.

Similar content being viewed by others

References

  1. Bixby,J. L. & Harris,W. A. Molecular mechanisms of axon growth and guidance. Annu. Rev. Cell Biol. 7, 117–159 (1991).

    Article  CAS  Google Scholar 

  2. Culotti,J. G. & Kolodkin,A. L. Functions of netrins and semaphorins in axon guidance. Curr. Opin. Neurobiol. 6, 81 (1996).

    Article  CAS  Google Scholar 

  3. Tessier-Lavigne,M. & Goodman,C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  ADS  CAS  Google Scholar 

  4. de la Torre,J. R. et al. Turning of retinal growth comes in a netrin-1 gradient mediated by the netrin receptor DCC. Neuron 19, 1211–1224 (1997).

    Article  CAS  Google Scholar 

  5. Deiner,M. S. et al. Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of fucntion leads to optic nerve hypoplasia. Neuron 19, 575–589 (1997).

    Article  CAS  Google Scholar 

  6. Ming,G. L. et al. cAMP-dependent growth cone guidance by netrin-1. Neuron 19, 1225–1235 (1997).

    Article  MathSciNet  CAS  Google Scholar 

  7. Cohen,J., Burne,J. F., winter,J. & Bartlett,P. Retinal ganglion cells lose response to laminin with maturation. Nature 322, 465–467 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Cohen,J., Burne,J. F., McKinlay,C. & Winter,J. The role of laminin and the laminin/fibronectin receptor complex in the outgrowth of retinal ganglion cell axons. Dev. Biol. 122, 407–418 (1987).

    Article  CAS  Google Scholar 

  9. Liesi,P. & Silver,J. Is astrocyte laminin involved in axon guidance in the mammalian CNS? Dev. Biol. 130, 774–785 (1988).

    Article  CAS  Google Scholar 

  10. de Curtis,I. & Reichardt,L. F. Function and spatial distribution in developing chick retina of the laminin receptor α6β1 and its isoforms. Development 118, 377–388 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lilienbaum,A., Reszka,A. A., Horwitz,A. F. & Holt,C. E. Chimeric integrins expressed in retinal ganglion cells impair process outgrowth in vivo. Mol. Cell. Neurosci. 6, 139–152 (1995).

    Article  CAS  Google Scholar 

  12. Darribere,T., Yamada,K. M., Johnson,K. E. & Boucaut,J. C. The 140-kDa fibronectin receptor complex is required for mesodermal cell adhesion during gastrulation in the amphibian Pleurodeles waltlii. Dev. Biol. 126, 182–194 (1988).

    Article  CAS  Google Scholar 

  13. Powell,S. K. & Kleinman,H. K. Neuronal laminins and their cellular receptors. Int. J. Biochem. Cell Biol. 29, 401–414 (1997).

    Article  CAS  Google Scholar 

  14. Sephel,G. C. et al. Laminin A chain synthetic peptide which supports neurite outgrowth. Biochem. Biophys. Res. Commun. 162, 821–829 (1989).

    Article  CAS  Google Scholar 

  15. Rabacchi,S. A., Neve,R. L. & Drager,U. C. A positional marker for the dorsal embryonic retina is homologous to the high-affinity laminin receptor. Development 109, 521–531 (1990).

    CAS  PubMed  Google Scholar 

  16. Ardini,E. et al. Co-regulation and physical association of the 67-kDa monomeric laminin receptor and the α6β4 integrin. J. Biol. Chem. 272, 2342–2345 (1997).

    Article  CAS  Google Scholar 

  17. Menard,S., Castronovo,V., Tagliabue,E. & Sobel,M. E. New insights into the metastasis-associated 67 kD laminin receptor. J. Cell Biochem. 67, 155–165 (1997).

    Article  CAS  Google Scholar 

  18. Weeks,B. S. et al. Adult and fetal human mesangial cells interact with specific laminin domains. Am. J. Physiol. 261, F688–695 (1991).

    CAS  PubMed  Google Scholar 

  19. Song,H. J., Ming,G. L. & Poo,M. M. cAMP-induced switching in turning direction of nerve growth cones. Nature 388, 275–279 (1997); erratum, ibid 389, 413 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Rothermel,J. D. & Parker Botelho,L. H. A mechanistic and kinetic analysis of the interactions of the diastereoisomers of adenosine 3′,5′-(cyclic)phosphorothioate with purified cyclic AMP-dependent protein kinase. Biochem. J. 251, 757–762 (1988).

    Article  CAS  Google Scholar 

  21. Bates,C. A. & Meyer,R. L. Heterotrimeric G protein activation rapidly inhibits outgrowth of optic axons from adult and embryonic mouse, and goldfish retinal explants. Brain Res. 714, 65–75 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Hauzenberger,D., Klominek,J. & Sundqvist,K. G. Functional specialization of fibronectin-binding beta 1-integrins in T lymphocyte migration. J. Immunol. 153, 960–971 (1994).

    CAS  PubMed  Google Scholar 

  23. Wiemelt,A. P., Engleka,M. J., Skorupa,A. F. & McMorris,F. A. Immunochemical visualization and quantitation of cyclic AMP in single cells. J. Biol. Chem. 272, 31489–31495 (1997).

    Article  CAS  Google Scholar 

  24. Hanson, M. G. Jr, Shen,S., Wiemelt,A. P., McMorris,F. A. & Barres,B. A. Cyclic AMP elevation is sufficient to promote the survival of spinal motor neurons in vitro. J. Neurosci. 18, 7361–7371 (1998).

    Article  Google Scholar 

  25. Holt,C. E. A single-cell analysis of early retinal ganglion cell differentiation in Xenopus: from soma to axon tip. J. Neurosci. 9, 3123–3145 (1989).

    Article  CAS  Google Scholar 

  26. Lohof,A. M., Quillan,M., Dan,Y. & Poo,M. M. Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J. Neurosci. 12, 1253–1261 (1992).

    Article  CAS  Google Scholar 

  27. Song, H.-J. & Poo, M.-M. Signal transduction underlying growth cone guidance by diffusible factors. Curr. Opin. Neurobiol. 9, 355–363 (1999).

    Article  Google Scholar 

  28. Nieuwkoop,P. D. & Faber,J. Normal Table of Xenopus laevis (Daudin). A Systematical and Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis (North-Holland, Amsterdam, 1967).

    Google Scholar 

  29. Harris,W. A. Holt,C. E., Smith,T. A. & Gallenson,N. Growth cones of developing retinal cells in vivo, on culture surfaces, and in collagen matrices. J. Neurosci. Res. 13, 101–122 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. K. Kleinman, A. Wiemelt and J. Fawcett for peptides and antibodies, and B. Berninger, W. Harris, T. Gomez, S.-i. Ohnuma, B. Barres, S.-i. Nakagawa and T. Das for discussions. This work was supported by NIH, PEW Scholars Award and a MRC programme grant (C.H.) and NIH grants (M.-M.P., M.T.-L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Holt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höpker, V., Shewan, D., Tessier-Lavigne, M. et al. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401, 69–73 (1999). https://doi.org/10.1038/43441

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43441

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing