Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Small-bandgap endohedral metallofullerenes in high yield and purity

An Erratum to this article was published on 23 December 1999

Abstract

The idea1 that fullerenes might be able to encapsulate atoms and molecules has been verified by the successful synthesis of a range of endohedral fullerenes, in which metallic or non-metallic species are trapped inside the carbon cage2,3,4,5,6,7,8,9,10,11,12,13. Metal-containing endohedral fullerenes have attracted particular interest as they might exhibit unusual material properties associated with charge transfer from the metal to the carbon shell. However, current synthesis methods have typical yields of less than 0.5%, and produce multiple endohedral fullerene isomers, which makes it difficult to perform detailed studies of their properties. Here we show that the introduction of small amounts of nitrogen into an electric-arc reactor allows for the efficient production of a new family of stable endohedral fullerenes encapsulating trimetallic nitride clusters, ErxSc3-xN@C80 (x = 0–3). This ‘trimetallic nitride template’ process generates milligram quantities of product containing 3–5% Sc3N@C80, which allows us to isolate the material and determine its crystal structure, and its optical and electronic properties. We find that the Sc3N moiety is encapsulated in a highly symmetric, icosahedral C80 cage, which is stabilized as a result of charge transfer between the nitride cluster and the fullerene cage. We expect that our method will provide access to a range of small-bandgap fullerene materials, whose electronic properties can be tuned by encapsulating nitride clusters containing different metals and metal mixtures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures and spectroscopic data for Sc3N@C80.
Figure 2: The structure of (Sc3N@C80).CoII(OEP).1.5 CHCl3.0.5 C6H6, perpendicular to the crystallographic mirror plane that bisects Co, Sc1 and N.
Figure 3: Mass spectral data for Er3-xScxN@C80 formation.

Similar content being viewed by others

References

  1. Kroto,H. W., Heath,J. R., O'Brien,S. C., Curl,R. F. & Smalley,R. E. Buckminsterfullerene. Nature 318, 162–163 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Chai,Y. et al. Fullerenes with metals inside. J. Phys. Chem. 95, 7564–7560 (1991).

    Article  CAS  Google Scholar 

  3. Beyers,R. et al. Preparation and structure of the metallofullerene Sc2@C84. Nature 370, 196–199 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Bethune,D. S., Johnson,R. D., Salem,J. R., de Vries,M. S. & Yannoni,C. S. Atoms in carbon cages: the structure and properties of endohedral fullerenes. Nature 366, 123–128 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Nagase,S., Kobayashi,K. & Akasaka,T. in Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials (eds Kadish, K. M. & Ruoff, R. S.) 747–762 (Electrochemical Society, Pennington, 1995).

    Google Scholar 

  6. Nagase,S., Kobayashi,K. & Akasaka,T. Endohedral metallofullerenes: new spherical cage molecules with interesting properties. Bull. Chem. Soc. Jpn 69, 2131–2142 (1996).

    Article  CAS  Google Scholar 

  7. Manolopoulous,D. E. & Fowler,P. W. Structural proposals for endohedral metal-fullerene complexes. Chem. Phys. Lett. 187, 17 (1991).

    Google Scholar 

  8. Fowler,P. W. & Manoloupoulos,D. E. An Atlas of Fullerenes (Oxford Univ. Press, 1995).

  9. Heinrich,F. H. et al. Isolation and characterization of C80. Angew. Chem. Int. Edn Engl. 35, 1732–1734 (1996).

    Article  Google Scholar 

  10. Wang, C.-R., Dennis,J. S., Inakuma,M. & Shinohara,H. in Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials (eds Kadish, K. M. & Ruoff, R. S.) 1023–1030 (Electrochemical Society, Pennington, 1998).

    Google Scholar 

  11. Kobayashi,K. & Nagase,S. Structures and electronic states of endohedral dimetallofullerenes: M2@C80 (M = Sc, Y, La, Ce, Pr, Eu, Gd, Yb, and Lu). Chem. Phys. Lett. 262, 227–232 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Kobayashi,K., Nagase,S. & Akasaka,T. Endohedral dimetallofullerenes Sc2@C84 and La2@C80. Are the metal atoms still inside the fullerene cages? Chem. Phys. Lett. 261, 502–506 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Akasaka,T. et al. 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral metallofullerenes. Angew. Chem. Int. Edn Engl. 36, 1643–1645 (1997).

    Article  CAS  Google Scholar 

  14. Stevenson,S. et al. Automated HPLC separation of endohedral metallofullerene Sc@C2n and Y@C2n fractions. Anal. Chem. 66, 2675–2679 (1994).

    Article  CAS  Google Scholar 

  15. Krätschmer,W., Fostiropoulos,K. & Huffman,D. R. The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule. Chem. Phys. Lett. 170, 167–170 (1990).

    Article  ADS  Google Scholar 

  16. Diederich,F. & Whetten,R. L. Beyond C60: the higher fullerenes. Acc. Chem. Res. 25, 119–126 (1992).

    Article  CAS  Google Scholar 

  17. Johnson,R. D., Meier,G., Salem,J. R. & Bethune,D. S. 2D nuclear magnetic resonance study of the structure of the fullerene C70. J. Am. Chem. Soc. 113, 3619–3621 (1991).

    Article  CAS  Google Scholar 

  18. Hirsch,A. The Chemistry of the Fullerenes (Thieme Verlung, Stuttgart, 1994).

    Book  Google Scholar 

  19. Fuchs,D. et al. Extraction and chromatographic elution behavior of endohedral metallofullerenes: inferences regarding effective dipole moments. J. Phys. Chem. 100, 725–729 (1996).

    Article  CAS  Google Scholar 

  20. Stevenson,S. et al. La2@C72: metal-mediated stabilization of a carbon cage. J. Phys. Chem. 102, 2833–2837 (1998).

    Article  CAS  Google Scholar 

  21. Yamamoto,K., Ishiguro,T., Sakurai,K. & Funasaka,H. in Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials (eds Kadish, K. M. & Ruoff, R. S.) 743–753 (Electrochemical Society, Pennington, 1997).

    Google Scholar 

  22. Kikuchi,K., Nakao,Y., Achiba,Y. & Nomura,M. in Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials (eds Kadish, K. M. & Ruoff, R. S.) 1300–1308 (Electrochemical Society, Pennington, 1994).

    Google Scholar 

  23. Wagner,C. D., Riggs,W. M., Davis,L. E., Moulder,J. F. & Muilenberg,G. E. (eds) Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie, Minnesota, 1978).

    Google Scholar 

  24. Olmstead,M. M. et al. Interaction of curved and flat molecular surfaces. The structures of crystalline compounds composed of fullerene (C60, C60O, C70, and C120O) and metal octaethylporphyrin units. J. Am. Chem. Soc. 121, 7090–7097 (1999).

    Article  CAS  Google Scholar 

  25. Anwander,R. et al. Synthesis and structural characterization of rare-earth bis(dimethylsilyl)amides and their surface organometallic chemistry on mesoporous MCM-41. J. Chem. Soc. Dalton Trans. 847–858 (1998).

  26. Dorn,H. C. et al. Endohedral metallofullerenes: isolation and characterization. Proc. Mater. Res. Soc. 359, 123–135 (1995).

    Article  CAS  Google Scholar 

  27. Sheldrich,G. M. Phase Annealing in SHELX: direct methods for larger structures. Acta Crystallogr. A 46, 467–473 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Burbank and Z. Sun for technical support. H.C.D. acknowledges discussions with M. Sherwood, D. S. Bethune, M. Anderson and R. Heflin, and thanks the NSF and the Virginia Tech ASPIRES program for supporting initial phases of this study. A.L.B. thanks the NSF for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Dorn.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, S., Rice, G., Glass, T. et al. Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401, 55–57 (1999). https://doi.org/10.1038/43415

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43415

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing