Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synergistic activation of transcription by CBP and p53

Abstract

The tumour suppressor p53 is a transcriptional regulator whose ability to inhibit cell growth is dependent upon its transactivation function1,2,3. Here we demonstrate that the transcription factor CBP, which is also implicated in cell proliferation and differentiation4,5,6,7,8,9,10,11,12,13,14, acts as a p53 coactivator and potentiates its transcriptional activity. The amino-terminal activation domain of p53 interacts with the carboxy-terminal portion of the CBP protein both in vitro and in vivo. In transfected SaoS-2 cells, CBP potentiates activation of the mdm-2 gene by p53 and, reciprocally, p53 potentiates activation of a Gal4-responsive target gene by a Gal4(1–147)–CBP(1678–2441) fusion protein. A double point mutation that destroys the transactivation function of p53 also abolishes its binding to CBP and its synergistic function with CBP. The ability of p53 to interact physically and functionally with a co-activator (CBP) that has histone acetyltransferase activity15,16 and with components (TAFs)17,18 of the general transcription machinery indicates that it may have different functions in a multistep activation pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p53 association with CBP.
Figure 2: p53 association with CBP.
Figure 3: CBP interacts with p53 both in vitro and in vivo.
Figure 4: CBP enhances p53-mediated transactivation.
Figure 5: CBP enhances p53-mediated transactivation.
Figure 6: CBP enhances p53-mediated transactivation.
Figure 7: Synergism between Gal–CBP(1678–2441) and p53.

Similar content being viewed by others

References

  1. Ko, L. J. & Prives, C. p53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996).

    Article  CAS  Google Scholar 

  2. El-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  3. Wu, X., Bayle, J. H., Olson, D. & Levine, A. J. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7, 1126–1132 (1993).

    Article  CAS  Google Scholar 

  4. Chrivia, J. C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Yang, X. J., Ogryzko, V. V., Nishikawa, J., Howard, B. H. & Nakatani, Y. Ap300/CBP-associated factor that competes with the adenoviral oncoprotein E1a. Nature 382, 319–324 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Kwok, R. P. et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223–226 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Arias, J. et al. Activation of cAMP and mitogen responsive gene relies on a common nuclear factor. Nature 370, 226–229 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Arany, Z., Newsome, D., Oldread, E., Livingston, D. M. & Eckner, R. Afamily of transcriptional adaptor proteins targeted by the E1a oncoprotein. Nature 374, 81–84 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Lundblad, J. R., Kwok, R. P., Laurance, M. E., Harter, M. L. & Goodman, R. H. Adenoviral E1a-associated protein p300 as a functional homologue of the transcriptional coactivator CBP. Nature 374, 85–88 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Banister, A. J. & Kouzarides, T. CBP-induced stimulation of c-Fos activity is abrogated by E1a. EMBO J. 14, 4758–4762 (1995).

    Article  Google Scholar 

  11. Dai, P. et al. CBP as a transcriptional coactivator of c-Myb. Genes Dev. 10, 528–540 (1996).

    Article  CAS  Google Scholar 

  12. Kamei, Y. et al. ACBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 (1996).

    Article  CAS  Google Scholar 

  13. Chakravati, D. et al. Roles of CBP/p300 in nuclear receptor signalling. Nature 383, 99–103 (1996).

    Article  ADS  Google Scholar 

  14. Lee, J. S., See, R. H., Deng, T. & Shi, Y. Adenovirus E1a downregulates c-Jun and JunB-mediated transcription by targeting their coactivator p300. Mol. Cell. Biol. 16, 4312–4326 (1996).

    Article  CAS  Google Scholar 

  15. Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivator p300 and CBP are histone acetyltransferase. Cell 87, 953–959 (1996).

    Article  CAS  Google Scholar 

  16. Bannister, A. J. & Kouzarides, T. The CBP coactivator is a histone acetyltransferase. Nature 384, 641–643 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Thut, C., Chen, J. L., Klemm, R. & Tjian, R. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267, 100–104 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Lu, H. & Levine, A. J. Human TAF31 protein is a transcriptional coactivator of the p53 protein. Proc. Natl Acad. Sci. USA 92, 5154–5158 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Xiao, H. et al. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell. Biol. 14, 7013–7024 (1994).

    Article  CAS  Google Scholar 

  20. Seto, E. et al. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl Acad. Sci. USA 89, 12028–12032 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Lin, J., Chen, J., Elenbaas, X. & Levine, A. J. Several hydrophic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1b 55-kD protein. Genes Dev. 8, 1235–1246 (1994).

    Article  CAS  Google Scholar 

  22. Haupt, Y., Rowan, S., Shaulian, E., Vousden, K. & Oren, M. Induction of apoptosis in HeLa cells by transactivation-deficient p53. Genes Dev. 9, 2170–2183 (1995).

    Article  CAS  Google Scholar 

  23. Steegenga, W. T. et al. Adenovirus E1a proteins inhibit activation of transcription by p53. Mol. Cell. Biol. 16, 2101–2109 (1996).

    Article  CAS  Google Scholar 

  24. Wong, H. K. & Ziff, E. B. Complementary functions of E1a conserved region 1 cooperate with conserved region 3 to activate adenovirus serotype 5 early promoters. J. Virol. 68, 4910–4920 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Godley, L. A. et al. Wild-type p53 transgenic mice exhibit altered differentiation of the ureteric bud and possess small kidneys. Genes Dev. 10, 836–850 (1996).

    Article  CAS  Google Scholar 

  26. Ferreri, K., Gill, G. & Montminy, M. The cAMP-regulated transcription factor CREB interacts with a component of the TFIID complex. Proc. Natl Acad. Sci. USA 91, 1210–1213 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Onate, S. A., Tsai, S. Y., Tsai, M-J. & O'Malley, B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354–1357 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Voegel, J. J., Heine, M. J. S., Zechel, C., Chambon, P. & Gronemeyer, H. TIF2, a 160 kd transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15, 3667–3675 (1996).

    Article  CAS  Google Scholar 

  29. Fondell, J. D., Ge, H. & Roeder, R. G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl Acad. Sci. USA 93, 8329–8333 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Gu, W., Bhatia, K., Magrath, I. T., Dang, C. V. & Dalla-Favera, R. Binding and suppression of the Myc transcriptional activation domain by p107. Science 264, 251–254 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. H. Goodman, A. Levine, M. Oren, A. G. Jochemsen, N. C. Jones, A.J.Banister and T. Kouzarides for plasmids; H. Xiao, Y. Tao, L. Wang, S. Stevens and J. D. Fondell for discussions and for critical comments on the manuscript and Y. Nakatani for sharing unpublished observations. This work was supported by a postdoctoral fellowship from Life Science Foundation for Advanced Cancer Studies to W.G., and by grants from the NIH to R.G.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Roeder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, W., Shi, XL. & Roeder, R. Synergistic activation of transcription by CBP and p53. Nature 387, 819–823 (1997). https://doi.org/10.1038/42972

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42972

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing