Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion

Abstract

The Rab family of low-molecular-mass GTP-binding proteins are thought to guide membrane fusion between a transport vesicle and the target membrane, and to determine the specificity of docking1,2,3. The docking and fusion of vesicles is, however, a complex multistep reaction, and the precise point at which Rab proteins act in these sequential processes is unknown. In brain, the Rab protein Rab3A is specific to synaptic vesicles, whose exocytosis can be monitored with submillisecond resolution by following synaptic transmission. We have now determined the precise point at which Rab3A acts in the sequence of synaptic vesicle docking and fusion by using electrophysiological analysis of neurotransmitter release in Rab3A-deficient mice. Unexpectedly, the size of the readily releasable pool of vesicles is normal, whereas Ca2+-triggered fusion is altered in the absence of Rab3A in that a more-than-usual number of exocytic events occur within a brief time after arrival of the nerve impulse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spontaneous transmitter release is normal in the absence of Rab3A.
Figure 2: Spontaneous transmitter release is normal in the absence of Rab3A.
Figure 3: The size and refilling rate of the readily releasable pool are unchanged in rab3A-mutant synapses ac.,
Figure 4: Mutation in rab3A involves alterations closely related to the final step of exocytosis.
Figure 5: In the absence of Rab3A, the probability of transmitter release is not altered but the amount of transmitter released is increased.

Similar content being viewed by others

References

  1. Südhof, T. C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375, 645–653 (1995).

    Article  ADS  Google Scholar 

  2. Scheller, R. H. Membrane trafficking in the presynaptic nerve terminal. Neuron 14, 893–897 (1995).

    Article  CAS  Google Scholar 

  3. Pfeffer, S. R. Rab GTPases: master regulators of membrane trafficking. Curr. Opin. Cell Biol. 6, 522–526 (1994).

    Article  CAS  Google Scholar 

  4. Katz, B. The Release of Neural Transmitter Substances(Liverpool University Press, Liverpool, (1969)).

    Google Scholar 

  5. Hubbard, J. I. Repetitive stimulation at the mammalian neuromuscular junction, and the mobilization of transmitter. J. Physiol. (Lond.) 169, 641–662 (1963).

    Article  CAS  Google Scholar 

  6. Geppert, M. et al. The role of rab3A in neurotransmitter release. Nature 369, 493–497 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Stevens, C. F. & Tsujimoto, T. Extimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc. Natl Acad. Sci. USA 92, 846–849 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Geppert, M. et al. Synaptotagmin I: a major Ca2+sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    Article  CAS  Google Scholar 

  9. Rosenmund, C. & Stevens, C. F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207 (1996).

    Article  CAS  Google Scholar 

  10. Mallart, A. & Martin, A. The relation between quantal content and facilitation at the neuromuscular junction of the frog. R. J. Physiol., (Lond.) 196, 593–604 (1968).

    Article  CAS  Google Scholar 

  11. Kamiya, H. & Zucker, R. S. Residual Ca2+and short-term synaptic plasticity. Nature 371, 603–606 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Huettner, J. E. & Bean, B. P. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc. Natl Acad. Sci. USA 85, 1307–1311 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Rosenmund, C., Clements, J. D. & Westbrook, G. L. Non-uniform probability of glutamate release at a hippocampal synapse. Science 262, 754–757 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Hessler, N. A., Shirke, A. M. & Manilow, R. The probability of transmitter release at a mammalian central synapse. Nature 366, 569–572 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Huang, E. & Stevens, C. F. Estimating the distribution of synaptic reliabilities. J. Neurophysiol.(submitted).

  16. Clements, J. D., Lester, R. A. J., >Tong, G., Jahr, C. E. & Westbrook, G. L. The time course of glutamate in the synaptic cleft. Science 258, 1498–1501 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Perkel, D. J. & Nicoll, R. A. Evidence for all-or-none regulation of neurotransmitter release: implications for long-term potentiation. J. Physiol., (Lond.) 471, 481–500 (1993).

    Article  CAS  Google Scholar 

  18. Olverman, H. J., Jones, A. W., Mewett, K. N. & Watkins, J. C. Structure/activity relations of N-methyl-D-aspartate receptor ligands as studied by their inhibition of [3H]D-2-amino-5-phosphonopentanoic acid binding in rat brain membranes. Neuroscience 26, 17–31 (1988).

    Article  CAS  Google Scholar 

  19. Holz, R. W., Brondyk, W. H., Senter, R. A., Kuizon, L. & Macara, I. G. Evidence for the involvement of Rab3A in Ca2+-dependent exocytosis from adrenal chromaffin cells. J. Biol. Chem. 269, 10229–10234 (1994).

    CAS  PubMed  Google Scholar 

  20. Johannes, L. et al. The GTPase rab3A negatively controls calcium-dependent exocytosis in neuroendocrine cells. EMBO J. 13, 2029–2037 (1994).

    Article  CAS  Google Scholar 

  21. Stahl, B., Chou, J. H., Li, C., Südhof, T. C. & Jahn, R. Rab3 reversibly recruits rabphilin to synaptic vesicles by a mechanism analogous to raf recruitment by ras. EMBO J. 15, 1799–1809 (1996).

    Article  CAS  Google Scholar 

  22. Mallart, A. & Martin, A. R. An analysis of facilitation of transmitter release at the neuromuscular junction of the frog. J. Physiol. (Lond.) 193, 593–604 (1967).

    Article  Google Scholar 

  23. Manabe, T., Wyllie, D. J. A., Perkel, D. J. & Nicoll, R. A. Modulation of synaptic transmission and long-term potentiation: effects of paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J. Neurophysiol. 70, 1451–1459 (1993).

    Article  CAS  Google Scholar 

  24. Schulz, P. E., Cook, E. P. & Johnston, D. Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J. Neurosci. 14, 5325–5337 (1994).

    Article  CAS  Google Scholar 

  25. Raastad, M., Storm, J. F. & Andersen, P. Putative single quantum and single fibre excitatory postsynaptic currents show similar amplitude range and variability in rat hippocampal slices. Eur. J. Neurosci. 4, 113–117 (1992).

    Article  Google Scholar 

  26. Allen, C. & Stevens, C. F. An evaluation of causes for unreliability of synaptic transmission. Proc. Natl Acad. Sci. USA 91, 10380–10383 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Stevens, C. F. & Wang, Y. Changes in reliability of synaptic function as a mechanism for plasticity. Nature 371, 704–707 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Stevens, C. F. & Wang, Y. Facilitation and depression at single central synapses. Neuron 14, 795–802 (1995).

    Article  CAS  Google Scholar 

  29. Triller, A. & Korn, H. Transmission at a central inhibitory synapse. III. Ultrastructure of physiologically identified and stained terminals. J. Neurophysiol. 48, 708–736 (1982).

    Article  CAS  Google Scholar 

  30. Rybin, V. et al. GTPase activity of Rab5 acts as a timer for endocytic membrane fusion. Nature 383, 266–269 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors are listed in alphabetical order. We thank J. Wesseling for discussions, and C. Boyer for help in the culture preparation. This work was supported by the Howard Hughes Medical Institute (C.F.S. and T.C.S.), the NIH (C.F.S.) and the National Alliance for Research on Schizophrenia and Depression (Y.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukiko Goda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geppert, M., Goda, Y., Stevens, C. et al. The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 387, 810–814 (1997). https://doi.org/10.1038/42954

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42954

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing