Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolution of high mutation rates in experimental populations of E. coli

Abstract

Most mutations are likely to be deleterious, and so the spontaneous mutation rate is generally held at a very low value1. Nonetheless, evolutionary theory predicts that high mutation rates can evolve under certain circumstances2,3,4. Empirical observations have previously been limited to short-term studies of the fates of mutator strains deliberately introduced into laboratory populations of Escherichia coli5,6,7, and to the effects of intense selective events on mutator frequencies in E. coli8. Here we report the rise of spontaneously originated mutators in populations of E. coli undergoing long-term adaptation to a new environment. Our results corroborate computer simulations of mutator evolution in adapting clonal populations4, and may help to explain observations that associate high mutation rates with emerging pathogens9 and with certain cancers10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rates of mutation in 12 Ara and Ara+ experimental populations (A − 1 to A− 6 and A+ 1 to A+ 6) at 10,000 generations and in their common ancestors REL606 (Ara) and REL607 (Ara+).
Figure 2
Figure 3: Mutation rates to nalidixic-acid resistance in 10,000-generation isolates from populations Ara+3, Ara4 and Ara2 and ancestor REL606 transformed with plasmids bearing wild-type alleles of seven known general mutator loci.

Similar content being viewed by others

References

  1. Drake, J. W. Spontaneous mutation. Annu. Rev. Genet. 25, 125–146 (1991).

    Article  CAS  Google Scholar 

  2. Leigh, E. G. Natural selection and mutability. Am. Nat. 104, 301–305 (1970).

    Article  Google Scholar 

  3. Ishii, K., Matsuda, H., Iwasa, Y. & Sasaki, A. Evolutionarily stable mutation rate in a periodically changing environment. Genetics 121, 163–174 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Taddei, F.et al. Role of mutator alleles in adaptive evolution. Nature 387 700–702 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Cox, E. C. & Gibson, T. C. Selection for high mutation rates in chemostats. Genetics 77, 169–184 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chao, L. & Cox, E. C. Competition between high and low mutating strains of Escherichia coli. Evolution 37, 125–134 (1983).

    Article  Google Scholar 

  7. Tröbner, W. & Piechocki, R. Competition between isogenic mutS and mut+populations of Escherichia coli K12 in continuously growing cultures. Mol. Gen. Genet. 198, 175–176 (1984).

    Article  Google Scholar 

  8. Mao, E. F., Lane, L., Lee, J. & Miller, J. H. Proliferation of mutators in a cell population. J. Bacteriol. 179, 417–422 (1997).

    Article  CAS  Google Scholar 

  9. LeClerc, J. E., Li, B., Payne, W. L. & Cebula, T. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208–1211 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Modrich, P. Mismatch repair, genetic stability and tumour avoidance. Phil. Trans. R. Soc. Lond. B 347, 89–95 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat. 138, 1315–1341 (1991).

    Article  Google Scholar 

  12. Lenski, R. E. & Travisano, M. Dynamics of adaptation and diversification: A 10,000-generation experiment with bacterial populations. Proc. Natl Acad. Sci. USA 91, 6808–6814 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Vasi, F., Travisano, M. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. II. Changes in life-history traits during adaptation to a seasonal environment. Am. Nat. 144, 432–456 (1994).

    Article  Google Scholar 

  14. Travisano, M. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. IV. Targets of selection and the specificity of adaptation. Genetics 143, 15–26 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Elena, S. F., Cooper, V. S. & Lenski, R. E. Punctuated evolution caused by selection of rare beneficial mutations. Science 272, 1802–1804 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Modrich, P. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25, 229–253 (1991).

    Article  CAS  Google Scholar 

  17. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1974).

    Article  ADS  Google Scholar 

  18. Moxon, E. R., Rainey, P. B., Nowak, M. A. & Lenski, R. E. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4, 24–33 (1994).

    Article  CAS  Google Scholar 

  19. Lederberg, S. Genetics of host-controlled restriction and modification of deoxyribonucleic acid in Escherichia coli. J. Bacteriol. 91, 1029–1036 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Carlton, B. C. & Brown, B. J. in Manual of Methods for General Bacteriology (ed. Gerhardt, P.) 222–242 (American Society for Microbiology, Washington DC, 1981).

    Google Scholar 

  21. Luria, S. E. & Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Miller, J. H. A Short Course in Bacterial Genetics (Cold Spring Harbor Laboratory Press, NY, 1992).

    Google Scholar 

  23. Pang, P. P., Lundberg, A. S. & Walker, G. C. Identification and characterization of the mutL and mutS gene products of Salmonella typhimurium LT2. J. Bacteriol. 163, 1007–1015 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Taucher-Scholz, G. & Hoffman-Berling, H. Identification of the gene for DNA helicase II of Escherichia coli. Eur. J. Biochem. 137, 573–580 (1983).

    Article  CAS  Google Scholar 

  25. Bhatnagar, S. K. & Bessman, M. J. Studies on the mutator gene, mutT, of Escherichia coli. Molecular cloning of the gene, purification of the gene product, and identification of a novel nucleoside triphosphatase. J. Biol. Chem. 263, 8953–8957 (1988).

    CAS  PubMed  Google Scholar 

  26. Horiuchi, T., Maki, H., Maruyama, M. & Sekiguchi, M. Identification of the dnaQ gene product and location of the structural gene for RNAse H of Escherichia coli by cloning of the genes. Proc. Natl Acad. Sci. USA 78, 3770–3774 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Schaaper, R. M. & Cornacchio, R. An Escherichia coli dnaE mutation with suppressor activity toward mutator mutD5. J. Bacteriol. 174, 1974–1982 (1992).

    Article  CAS  Google Scholar 

  28. Sambrook, E. F., Fritsch, T. & Maniatis, J. Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, NY, 1989).

    Google Scholar 

  29. Ma, W. T., Sandri, G. v. H. & Sarkar, S. Analysis of the Luria-Delbrück distribution using discrete convolution powers. J. Appl. Prob. 29, 255–267 (1992).

    Article  Google Scholar 

  30. Stewart, F. M. Fluctuation tests: how reliable are the estimates of mutation rates? Genetics 137, 1139–1146 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Taddei for sharing data before publicaiton; C. Zeyl for permission to cite unpublished data; A. White for help with statistical analyses; B. Bohannan, L. Ekunwe and P. Frank for technical assistance; T. Cebula, S. F. Elena, D. G. MacPhee, J. Mongold and M. Travisano for discussions; and H. Maki and J. E. LeClerc for plasmids. Supported by the US NSF and by the Center for Microbial Ecology, Michigan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Sniegowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sniegowski, P., Gerrish, P. & Lenski, R. Evolution of high mutation rates in experimental populations of E. coli. Nature 387, 703–705 (1997). https://doi.org/10.1038/42701

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42701

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing