Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The putative chaperone calmegin is required for sperm fertility

Abstract

The proper folding of newly synthesized membrane proteins in the endoplasmic reticulum (ER) is required for the formation of functional mature proteins. Calnexin is a ubiquitous ER chaperone that plays a major role in quality control by retaining incompletely folded or misfolded proteins1,2,3,4,5. In contrast to other known chaperones such as heat-shock proteins, BiP and calreticulin, calnexin is an integral membrane protein1,6. Calmegin is a testis-specific ER protein that is homologous to calnexin7,8,9. Here we show that calmegin binds to nascent polypeptides during spermatogenesis, and have analysed its physiological function by targeted disruption of its gene. Homozygous-null male mice are nearly sterile even though spermatogenesis is morphologically normal and mating is normal. In vitro, sperm from homozygous-null males do not adhere to the egg extracellular matrix (zona pellucida), and this defect may explain the observed infertility. These results suggest that calmegin functions as a chaperone for one or more sperm surface proteins that mediate the interactions between sperm and egg. The defective zona pellucida-adhesion phenotype of sperm from calmegin-deficient mice is reminiscent of certain cases of unexplained infertility in human males.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calmegin and calnexin interact with nascent glycoproteins during spermatogenesis.
Figure 2: Targeted disruption of calmegin gene.
Figure 3: Sperm from calmegin-deficient and wild-type mice were stained with anti-acrosomal monoclonal and polyclonal antibodies (OBF13, MC101, MN17, MN9, sp56 and PH-20; see Methods).
Figure 4: Sperm from +/+ mice successfully adhered to the eggs (a), but those from −/− mice failed to attach despite frquent collisions with the zona pellucida (b).

Similar content being viewed by others

References

  1. Bergeron, J. J., Brenner, M. B., Thomas, D. Y. & Williams, D. B. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 19, 124–128 (1994).

    Article  CAS  Google Scholar 

  2. Vassilakos, A., Cohen Doyle, M. F., Peterson, P. A., Jackson, M. R. & Williams, D. B. The molecular chaperone calnexin facilities folding and assembly of class I histocompatibility molecules. EMBO J. 15, 1495–1506 (1996).

    Article  CAS  Google Scholar 

  3. Wada, I., Ou, W. J., Liu, M. C. & Scheele, G. Chaperone function of calnexin for the folding intermediate of gp80, the major secretory protein in MDCK cells. Regulation by redox state and ATP. J. Biol. Chem. 269, 7464–7472 (1994).

    CAS  PubMed  Google Scholar 

  4. Herbert, D. N., Foellmer, B. & Helenius, A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81, 425–433 (1995).

    Article  Google Scholar 

  5. Ou, W. J., Cameron, P. H., Thomas, D. Y. & Bergeron, J. J. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364, 771–776 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Wada, I. et al. SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J. Biol. Chem. 266, 19599–19610 (1991).

    CAS  PubMed  Google Scholar 

  7. Watanabe, D. et al. Molecular cloning of a novel Ca(2+)-binding protein (calmegin) specifically expressed during male meiotic germ cell development. J. Biol. Chem. 269, 7744–7749 (1994).

    CAS  PubMed  Google Scholar 

  8. Watanabe, D., Sawada, K., Koshimizu, U., Kagawa, T. & Nishimune, Y. Characterization of male meiotic germ cell-specific antigen (Meg 1) by monoclonal antibody TRA 369 in mice. Mol. Reprod. Dev. 33, 307–312 (1992).

    Article  CAS  Google Scholar 

  9. Ohsako, S., Hayashi, Y. & Bunick, D. Molecular cloning and sequencing of calnexin-t. An abundant male germ cell-specific calcium-binding protein of the endoplasmic reticulum. J. Biol. Chem. 269, 14140–14148 (1994).

    CAS  PubMed  Google Scholar 

  10. Russell, L. D., Ettlin, R. A., Hikim, A. P. S. & Clegg, E. D. Histopathological Evaluation of the Testis (Cache River, Clearwater, (1990)).

    Google Scholar 

  11. Cheng, A. et al. Sperm–egg recognition in the mouse: characterization of sp56, a sperm protein having specific affinity for ZP3. J. Cell. Biol. 125, 867–878 (1994).

    Article  CAS  Google Scholar 

  12. Bookbinder, L. H., Cheng, A. & Bleil, J. D. Tissue- and species-specific expression of sp56, a mouse sperm fertilization protein. Science 269, 86–89 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Hunnicutt, G. R. et al. Structural relationship of sperm soluble hyaluronidase to the sperm membrane protein PH-20. Biol. Reprod. 54, 1343–1349 (1996).

    Article  CAS  Google Scholar 

  14. Hardy, D. M. & Garbers, D. L. Species-specific binding of sperm proteins to the extracellular matrix (zona pellucida) of the egg. J. Biol. Chem. 269, 19000–19004 (1994).

    CAS  PubMed  Google Scholar 

  15. Hardy, D. M. & Garbers, D. L. Asperm membrane protein that binds in a species-specific manner to the egg extracellular matrix is homologous to von Willebrand factor. J. Biol. Chem. 270, 26025–26028 (1995).

    Article  CAS  Google Scholar 

  16. Lopez, L. C. et al. Receptor function of mouse sperm surface galactosyltransferase during fertilization. J. Cell. Biol. 101, 1501–1510 (1985).

    Article  CAS  Google Scholar 

  17. Gong, X., Subois, D. H., Miller, D. J. & Shur, B. D. Activation of a G protein complex by aggregation of beta-1,4-galactosyltransferase on the surface of sperm. Science 269, 1718–1721 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Saling, P. M. How the egg regulates sperm function during gamete interaction: facts and fantasies. Biol. Reprod. 44, 246–251 (1991).

    Article  CAS  Google Scholar 

  19. Burks, D. J., Carballada, R., Moore, H. D. & Saling, P. M. Interaction of a tyrosine kinase from human sperm with the zona pellucida at fertilization Science 269, 83–86 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Richardson, R. T., Yamasaki, N. & O'Rand, M. G. Sequence of a rabbit sperm zona pellucida binding protein and localization during the acrosome reaction. Dev. Biol. 165, 688–701 (1994).

    Article  CAS  Google Scholar 

  21. Yamasaki, N., Richardson, R. T. & O'Rand, M. G. Expression of the rabbit sperm protein Sp17 in COS cells and interaction of recombinant Sp17 with the rabbit zona pellucida. Mol. Reprod. Dev. 40, 48–55 (1995).

    Article  CAS  Google Scholar 

  22. Liu, D. Y. & Baker, H. W. Anew test for the assessment of sperm-zona pellucida penetration: relationship with results of other sperm tests and fertilization in vitro. Hum. Reprod. 9, 489–496 (1994).

    Article  CAS  Google Scholar 

  23. Mackenna, A., Barratt, C. L., Kessopoulou, E. & Cooke, I. The contribution of a hidden male factor to unexplained infertility. Fertil. Steril. 59, 405–411 (1993).

    Article  CAS  Google Scholar 

  24. Okabe, M. et al. Effect of a monoclonal anti-mouse sperm antibody (OFB13) of interaction of mouse sperm to zona-free mouse and hamster eggs. J. Reprod. Immunol. 13, 211–219 (1988).

    Article  CAS  Google Scholar 

  25. Toshimori, K., Tanii, I. & Araki, S. Intra-acrosomal 155,000 dalton protein increases the antigenicity during mouse sperm maturation in the epididymis: a study using a monoclonal antibody MC101. Mol. Reprod. Dev. 42, 72–79 (1995).

    Article  CAS  Google Scholar 

  26. Tanii, I., Araki, S. & Toshimori, K. Intra-acrosomal organization of a 90-kilodalton antigen during spermiogenesis in the rat. Cell Tissue Res. 277, 61–67 (1994).

    Article  CAS  Google Scholar 

  27. Toshimori, K., Tanii, I., Araki, S. & Oura, C. Characterization of the antigen recognized by a monoclonal antibody MN9: unique transport pathway to the equatorial segment of sperm head during spermiogenesis. Cell Tissue Res. 270, 459–468 (1992).

    Article  CAS  Google Scholar 

  28. Toyoda, Y., Yokoyama, M. & Hoshi, T. Studies on the fertilization of mouse eggs in vitro. I. In vitro fertilization of eggs by fresh epididymal sperm. Jpn. J. Anim. Reprod. 16, 147–151 (1971).

    Article  Google Scholar 

  29. Tybulewicz, V. L., Crawford, C. E., Jackson, P. K., Bronson, R. T. & Mulligan, R. C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Primakoff for the anti-PH-20 antibody and B. Storey, G. Gerton and D.Hardy for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Okabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikawa, M., Wada, I., Kominami, K. et al. The putative chaperone calmegin is required for sperm fertility. Nature 387, 607–611 (1997). https://doi.org/10.1038/42484

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42484

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing