Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional relationship of cytochrome c6 and plastocyanin in Arabidopsis

Abstract

Photosynthetic electron carriers are important in converting light energy into chemical energy in green plants. Although protein components in the electron transport chain are largely conserved among plants, algae and prokaryotes, there is thought to be a major difference concerning a soluble protein in the thylakoid lumen. In cyanobacteria and eukaryotic algae, both plastocyanin and cytochrome c6 mediate electron transfer from cytochrome b6f complex to photosystem I1,2,3,4. In contrast, only plastocyanin has been found to play the same role in higher plants. It is widely accepted that cytochrome c6 has been evolutionarily eliminated from higher-plant chloroplasts5,6. Here we report characterization of a cytochrome c6-like protein from Arabidopsis (referred to as Atc6). Atc6 is a functional cytochrome c localized in the thylakoid lumen. Electron transport reconstruction assay showed that Atc6 replaced plastocyanin in the photosynthetic electron transport process. Genetic analysis demonstrated that neither plastocyanin nor Atc6 was absolutely essential for Arabidopsis growth and development. However, plants lacking both plastocyanin and Atc6 did not survive.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence analyses of Atc6 and other cyt c6 proteins.
Figure 2: Expression pattern and subcellular localization of Atc6 in Arabidopsis.
Figure 3: Atc6 is a functional cytochrome c.
Figure 4: Genetic analysis of plastocyanin and Atc6 in Arabidopsis.

Similar content being viewed by others

References

  1. Crofts, A. R. & Wood, P. M. Photosynthetic electron transport chains if plants and bacteria and their role as proton pumps. Curr. Top. Bioenerg. 7, 175–244 (1978)

    CAS  Google Scholar 

  2. Hauska, G. A., McCarty, R. E., Berzborn, R. J., Racker, E. . J. Biol. Chem. 246, 3524–3531 (1971)

    CAS  PubMed  Google Scholar 

  3. Malkin, R. & Niyogi, K. in Plant Biochemistry and Molecular Biology (eds Buchanan, B. B., Gruissem, W. & Jones, R. L.) 568–629 (American Society of Plant Physiologists, Rockville, Maryland, 2000)

    Google Scholar 

  4. Merchant, S. in Metal Ions in Gene Regulation (eds Silver, S. & Walden, W.) 450–467 (Chapman and Hall, New York, 1998)

    Book  Google Scholar 

  5. De la Cerda, B., Diaz-Quintana, A., Navarro, J. A., Hervas, M. & De la Rosa, M. A. Site-directed mutagenesis of cytochrome c6 from Synechocystis sp. PCC6803: The heme protein possesses a negatively charged area that may be isofunctional with the acidic patch of plastocyanin. J. Biol. Chem. 274, 13292–13297 (1999)

    Article  CAS  Google Scholar 

  6. Hippler, M., Drepper, F., Rochaix, J.-D. & Muehlenhoff, U. Insertion of the N-terminal part of PsaF from Chlamydomonas reinhardtii into photosystem I from Synechococcus elongatus enables efficient binding of algal plastocyanin and cytochrome c6. J. Biol. Chem. 274, 4180–4188 (1999)

    Article  CAS  Google Scholar 

  7. Katoh, S. Studies on the algal cytochromes of C-type. Biochem. J. 46, 629–632 (1959)

    Article  Google Scholar 

  8. Sigfridsson, K. Plastocyanin, an electron-transfer protein. Photosynth. Res. 57, 1–28 (1998)

    Article  CAS  Google Scholar 

  9. Tobin, E. M. & Silverthorne, J. Light regulation of gene expression in higher plants. Annu. Rev. Plant Physiol. 36, 569–594 (1985)

    Article  CAS  Google Scholar 

  10. Williams, J. G. Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol. 167, 766–778 (1988)

    Article  CAS  Google Scholar 

  11. Atta-Asafo-Adjei, E. & Dilley, R. A. Plastocyanin stimulation of whole chain and photosystem I electron transport in inside-out thylakoid vesicles. Arch. Biochem. Biophys. 243, 660–667 (1985)

    Article  CAS  Google Scholar 

  12. Wood, P. M. Interchangeable copper and iron proteins in algal photosynthesis. Studies on plastocyanin and cytochrome c-552 in Chlamydomonas. Eur. J. Biochem. 87, 9–19 (1978)

    Article  CAS  Google Scholar 

  13. Waterhouse, P. M., Graham, M. W. & Wang, M. B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl Acad. Sci. USA 95, 13959–13964 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Chuang, C.-F. & Meyerowitz, E. M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 97, 4985–4990 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Luan, S. & Bogorad, L. A rice gene promoter contains separate cis-acting elements for the expression in dicot and monocot plants. Plant Cell 4, 971–981 (1992)

    Article  CAS  Google Scholar 

  16. Kim, J., Harter, K. & Theologis, A. Protein-protein interactions among the AUX/IAA proteins. Proc. Natl Acad. Sci. USA 94, 11786–11791 (1997)

    Article  ADS  CAS  Google Scholar 

  17. Durfee, T. et al. The retinoblastoma protein associates with the protein phosphatase type-1 catalytic subunit. Genes Dev. 7, 555–569 (1993)

    Article  CAS  Google Scholar 

  18. Gupta, R., Huang, Y., Kieber, J. J. & Luan, S. Identification of a dual-specificity protein phosphatase that inactivates MAP kinase from Arabidopsis. Plant J. 16, 581–590 (1998)

    Article  CAS  Google Scholar 

  19. Krysan, P. J., Young, J. C. & Sussman, M. R. T-DN A as an insertional mutagen in Arabidopsis. Plant Cell 11, 2283–2290 (1999)

    Article  CAS  Google Scholar 

  20. Ni, M., Cui, D., Einstein, J., Narasimhulu, S., Vergara, C. E. & Gelvin, S. B. Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J. 7, 661–676 (1995)

    Article  CAS  Google Scholar 

  21. Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998)

    Article  CAS  Google Scholar 

  22. Lin, Y., Wang, Y., Zhu, J.-K. & Yang, Z. Localization of a Rho GTPase implies a role in tip growth and movement of the generative cell in pollen tubes. Plant Cell 8, 293–303 (1996)

    Article  CAS  Google Scholar 

  23. Somerville, C. R., Somerville, S. C. & Ogren, W. L. Isolation of photosynthetically active protoplasts and chloroplasts from Arabidopsis thaliana. Plant Sci. Lett. 21, 89–96 (1982)

    Article  Google Scholar 

  24. Rippka, R., Deruelles, J., Waterbury, J., Herdman, M. & Stanier, R. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979)

    Google Scholar 

  25. Hervas, M. et al. Synechocystis-6803 plastocyanin isolated from both the cyanobacterium and E. Coli transformed cells are identical. FEBS Lett. 319, 257–260 (1993)

    Article  CAS  Google Scholar 

  26. Zhang, L., McSpadden, B., Pakrasi, H. & Whitmarsh, J. Copper-mediated regulation of cytochrome-c553 and plastocyanin in the cyanobacterium Synechocystis-6803. J. Biol. Chem. 267, 19054–19059 (1992)

    CAS  PubMed  Google Scholar 

  27. Quinn, J. M. & Merchant, S. Copper-responsive gene expression during adaptation to copper deficiency. Methods Enzymol. 297, 263–279 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Malkin, J. Gray and S. Merchant for discussions. This work was supported by the National Institutes of Health and the US Department of Energy (S.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Luan.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R., He, Z. & Luan, S. Functional relationship of cytochrome c6 and plastocyanin in Arabidopsis . Nature 417, 567–571 (2002). https://doi.org/10.1038/417567a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/417567a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing