Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of a factor that links apoptotic cells to phagocytes

Abstract

Apoptotic cells are rapidly engulfed by phagocytes to prevent the release of potentially noxious or immunogenic intracellular materials from the dying cells, thereby preserving the integrity and function of the surrounding tissue1. Phagocytes engulf apoptotic but not healthy cells, indicating that the apoptotic cells present a signal to the phagocytes, and the phagocytes recognize the signal using a specific receptor2. Here, we report a factor that links apoptotic cells to phagocytes. We found that milk fat globule-EGF-factor 8 (MFG-E8)3,4, a secreted glycoprotein, was produced by thioglycollate-elicited macrophages. MFG-E8 specifically bound to apoptotic cells by recognizing aminophospholipids such as phosphatidylserine. MFG-E8, when engaged by phospholipids, bound to cells via its RGD (arginine-glycine-aspartate) motif—it bound particularly strongly to cells expressing αvβ3 integrin. The NIH3T3 cell transformants that expressed a high level of αvβ3 integrin were found to engulf apoptotic cells when MFG-E8 was added. MFG-E8 carrying a point mutation in the RGD motif behaved as a dominant-negative form, and inhibited the phagocytosis of apoptotic cells by peritoneal macrophages in vitro and in vivo. These results indicate that MFG-E8 secreted from activated macrophages binds to apoptotic cells, and brings them to phagocytes for engulfment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Establishment of monoclonal antibody that enhances the phagocytosis of apoptotic cells.
Figure 2: Identification of MFG-E8, and its expression.
Figure 3: Binding of MFG-E8 to aminophospholipids and integrin-expressing cells.
Figure 4: MFG-E8-L-dependent engulfment of apoptotic cells.

Similar content being viewed by others

References

  1. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Platt, N., da Silva, R. P. & Gordon, S. Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol. 8, 365–372 (1998)

    Article  CAS  PubMed  Google Scholar 

  3. Stubbs, J. D. et al. cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences. Proc. Natl Acad. Sci. USA 87, 8417–8421 (1990)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oshima, K. et al. Lactation-dependent expression of an mRNA splice variant with an exon for a multiply O-glycosylated domain of mouse milk fat globule glycoprotein MFG-E8. Biochem. Biophys. Res. Commun. 254, 522–528 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. McIlroy, D. et al. An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. Genes Dev. 14, 549–558 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bowman, E. J., Siebers, A. & Altendorf, K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc. Natl Acad. Sci. USA 85, 7972–7976 (1988)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koopman, G. et al. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415–1420 (1994)

    CAS  PubMed  Google Scholar 

  8. Hynes, R. O. Integrins: versatility, modulation, and signalling in cell adhesion. Cell 69, 11–25 (1992)

    Article  CAS  PubMed  Google Scholar 

  9. Fadok, V. A., Bratton, D. L., Frasch, S. C., Warner, M. L. & Henson, P. M. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 5, 551–562 (1998)

    Article  CAS  PubMed  Google Scholar 

  10. Nakano, T. et al. Cell adhesion to phosphatidylserine mediated by a product of growth arrest-specific gene 6. J. Biol. Chem. 272, 29411–29414 (1997)

    Article  CAS  PubMed  Google Scholar 

  11. Savill, J., Hogg, N., Ren, Y. & Haslett, C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest. 90, 1513–1522 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ogden, C. A. et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med. 194, 781–795 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fadok, V. A. et al. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J. Immunol. 149, 4029–4035 (1992)

    CAS  PubMed  Google Scholar 

  14. Emoto, K., Toyama-Sorimachi, N., Karasuyama, H., Inoue, K. & Umeda, M. Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp. Cell Res. 232, 430–434 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. Blankenberg, F. G. et al. In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc. Natl Acad. Sci. USA 95, 6349–6354 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fadok, V. A., de Cathelineau, A., Daleke, D. L., Henson, P. M. & Bratton, D. L. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 276, 1071–1077 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Rigotti, A., Acton, S. L. & Krieger, M. The class B scavenger receptors SR-BI and CD36 are receptors for anionic phospholipids. J. Biol. Chem. 270, 16221–16224 (1995)

    Article  CAS  PubMed  Google Scholar 

  18. Savill, J., Dransfield, I., Hogg, N. & Haslett, C. Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343, 170–173 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Hengartner, M. O. Apoptosis: corralling the corpses. Cell 104, 325–328 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Fadok, V. A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Scott, R. S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207–211 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Wilde, C. J., Knight, C. H. & Flint, D. J. Control of milk secretion and apoptosis during mammary involution. J. Mamm. Gland Biol. Neoplasia 4, 129–136 (1999)

    Article  CAS  Google Scholar 

  24. Fadok, V. A. Clearance: the last and often forgotten stage of apoptosis. J. Mamm. Gland Biol. Neoplasia 4, 203–211 (1999)

    Article  CAS  Google Scholar 

  25. Wada, J. et al. Cloning of mouse integrin αV cDNA and role of the αV-related matrix receptors in metanephric development. J. Cell. Biol. 132, 1161–1176 (1996)

    Article  CAS  PubMed  Google Scholar 

  26. McHugh, K. P., Kitazawa, S., Teitelbaum, S. L. & Ross, F. P. Cloning and characterization of the murine β(3) integrin gene promoter: identification of an interleukin-4 responsive element and regulation by STAT-6. J. Cell Biochem. 81, 320–332 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. Taylor, P. R. et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J. Exp. Med. 192, 359–366 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kawane, K. et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292, 1546–1549 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Iwamatsu, A. & Yoshida-Kubomura, N. Systematic peptide fragmentation of polyvinylidine difluoride (PVDF)-immobilized proteins prior to microsequencing. J. Biochem. (Tokyo) 120, 29–34 (1996)

    Article  CAS  Google Scholar 

  30. Andersen, M. H., Berglund, L., Rasmussen, J. T. & Petersen, T. E. Bovine PAS-6/7 binds αvβ5 integrins and anionic phospholipids through two domains. Biochemistry 36, 5441–5446 (1997)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Kitamura for the retrovirus expression system, Y. Seto for maintaining the mice, and S. Aoyama for secretarial assistance. This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, Sports and Culture in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigekazu Nagata.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanayama, R., Tanaka, M., Miwa, K. et al. Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182–187 (2002). https://doi.org/10.1038/417182a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/417182a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing