Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

SWAP-70 is a guanine-nucleotide-exchange factor that mediates signalling of membrane ruffling

Abstract

Phosphoinositide-3-OH kinase (PI(3)K), activated through growth factor stimulation, generates a lipid second messenger, phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3)1,2,3,4,5. PtdIns(3,4,5)P3 is instrumantal in signalling pathways that trigger cell activation, cytoskeletal rearrangement, survival and other reactions. However, some targets of PtdIns(3,4,5)P3 are yet to be discovered1,2,3,4,5,6,7. We demonstrate that SWAP-70, a unique signalling protein8,9,10, specifically binds PtdIns(3,4,5)P3. On stimulation by growth factors, cytoplasmic SWAP-70, which is dependent on PI(3)K but independent of Ras, moved to cell membrane rearrangements known as ruffles. However, mutant SWAP-70 lacking the ability to bind PtdIns(3,4,5)P3 blocked membrane ruffling induced by epidermal growth factor or platelet-derived growth factor. SWAP-70 shows low homology with Rac-guanine nucleotide exchange factors (GEFs), and catalyses PtdIns(3,4,5)P3-dependent guanine nucleotide exchange to Rac. SWAP-70-deficient fibroblasts showed impaired membrane ruffling after stimulation with epidermal growth factor, and failed to activate Rac fully. We conclude that SWAP-70 is a new type of Rac-GEF which, independently of Ras, transduces signals from tyrosine kinase receptors to Rac.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SWAP-70 binds PtdIns(3,4,5)P3.
Figure 2: SWAP-70 translocates to membrane ruffles.
Figure 3: SWAP-70 is a PtdIns(3,4,5)P3-dependent Rac specific GEF.
Figure 4: Impaired membrane ruffling in SWAP-70-deficient primary fibroblasts.

Similar content being viewed by others

References

  1. Toker, A. & Cantley, L. C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387, 673–676 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Downward, J. Role of phosphoinositide-3-OH kinase in Ras signaling. Adv. Second Mess. Phosphoprot. Res. 31, 1–10 (1997).

    Article  CAS  Google Scholar 

  3. Martin, T. F. Phosphoinositide lipids as signaling molecules: Common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu. Rev. Cell. Dev. Biol. 14, 231–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Rameh, L. E. & Cantley, L. C. The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274, 8347–8350 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Fruman, D. A., Meyers, R. E. & Cantley, L. C. Phosphoinositide kinases. Annu. Rev. Biochem. 67, 481–507 (1998).

    CAS  PubMed  Google Scholar 

  6. Fukui, Y., Ihara, S. & Nagata, S. Downstream of phosphatidylinositol-3 kinase, a multifunctional signaling molecule, and its regulation in cell responses. J. Biochem. (Tokyo) 124, 1–7 (1998).

    Article  CAS  Google Scholar 

  7. Vanhaesebroeck, B. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Borggrefe, T., Wabl, M., Akhmedov, A. T. & Jessberger, R. A B-cell-specific DNA recombination complex. J. Biol. Chem. 273, 17025–17035 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Borggrefe, T. et al. Cellular, intracellular, and developmental expression patterns of murine SWAP-70. Eur. J. Immunol. 29, 1812–1822 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Masat, L. et al. Association of SWAP-70 with the B cell antigen receptor complex. Proc. Natl Acad. Sci. USA 97, 2180–2184 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Borggrefe, T., Keshavarzi, S., Gross, B., Wabl, M. & Jessberger, R. Impaired IgE response in SWAP-70-deficient mice. Eur. J. Immunol. 8, 2467–2475 (2001).

    Article  Google Scholar 

  12. Shirai, R. et al. Synthesis of diacylglycerol analogs of phosphatidylinositol 3,4,5-trisphosphate. Tetrahedron Lett. 39, 9485–9488 (1998).

    Article  CAS  Google Scholar 

  13. Staal, S. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc. Natl Acad. Sci. USA 84, 5034–5037 (1987).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tanaka, K. et al. A target of phosphatidylinositol 3,4,5-trisphosphate with a zinc finger motif similar to that of the ADP-ribosylation-factor GTPase-activating protein and two pleckstrin homology domains. Eur. J. Biochem. 245, 512–519 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Maekawa, M. et al. A novel mammalian Ras GTPase-activating protein which has phospholipid-binding and Btk homology regions. Mol. Cell. Biol. 14, 6879–6885 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Campbell, D. & Kernan, J. Mast cells in the central nervous system. Nature 210, 756–757 (1966).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Thomas, J. et al. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 261, 355–358 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Han, J. et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279, 558–560 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Fleming, I. N., Gray, A. & Downes, C. P. Regulation of the Rac1-specific exchange factor Tiam1 involves both phosphoinositide 3-kinase-dependent and -independent components. Biochem. J. 351, 173–182 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Das, B. et al. Control of intramolecular interactions between the pleckstrin homology and Dbl homology domains of Vav and Sos1 regulates Rac binding. J. Biol. Chem. 275, 15074–15081 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Joly, M., Kazlauskas, A., Fay, F. S. & Corvera, S. Disruption of PDGF receptor trafficking by mutation of its PI-3 kinase binding sites. Science 263, 684–687 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Martin, S. S. et al. Phosphatidylinositol 3-kinase is necessary and sufficient for insulin-stimulated stress fiber breakdown. Endocrinology 137, 5045–5054 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Wennstrom, S. & Downward, J. Role of phosphoinositide 3-kinase in activation of ras and mitogen-activated protein kinase by epidermal growth factor. Mol. Cell. Biol. 19, 4279–4288 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Missy, K. et al. Lipid products of phosphoinositide 3-kinase interact with Rac1 GTPase and stimulate GDP dissociation. J. Biol. Chem. 273, 30279–30286 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Scita, G. et al. EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290–293 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Iwamatsu, A. S-carboxymethylation of proteins transferred onto polyvinylidene difluoride membranes followed by in situ protease digestion and amino acid microsequencing. Electrophoresis 13, 142–147 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka, K. et al. Evidence that a phosphatidylinositol 3,4,5-trisphosphate-binding protein can function in nucleus. J. Biol. Chem. 274, 3919–3922 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Kita, Y. et al. Microinjection of activated phosphatidylinositol-3 kinase induces process outgrowth in rat PC12 cells through the Rac-JNK signal transduction pathway. J. Cell Sci. 111, 907–915 (1998).

    CAS  PubMed  Google Scholar 

  29. Lenzen, C., Cool, R. & Wittinghofer, A. Analysis of intrinsic and CDC25-stimulated guanine nucleotide exchange of p21ras-nucleotide complexes by fluorescence measurements. Methods Enzymol. 255, 95–109 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Zheng, Y., Bagrodia, S. & Cerione, R. Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85. J. Biol. Chem. 269, 18727–18730 (1994).

    CAS  PubMed  Google Scholar 

  31. Gross, B. et al. SWAP-70 deficient mast cells are impaired in development and IgE-mediated degranulation. Eur. J. Immunol. (in the press).

Download references

Acknowledgements

We thank B. Mayer and M. Matsuda for useful suggestions and critical reading of the manuscript, and T. Nagase (Kazusa DNA Research Institute) for supplying the KIAA0640 clone. This work was supported by grants-in-aid for scientific research to Y.F. from the Ministry of Education, Science, Sports, and Culture of Japan, and by an NIH grant to R.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhisa Fukui.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinohara, M., Terada, Y., Iwamatsu, A. et al. SWAP-70 is a guanine-nucleotide-exchange factor that mediates signalling of membrane ruffling. Nature 416, 759–763 (2002). https://doi.org/10.1038/416759a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416759a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing