Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for recognition of acidic-cluster dileucine sequence by GGA1

Abstract

GGAs (Golgi-localizing, γ-adaptin ear homology domain, ARF-interacting proteins) are critical for the transport of soluble proteins from the trans-Golgi network (TGN) to endosomes/lysosomes by means of interactions with TGN-sorting receptors, ADP-ribosylation factor (ARF), and clathrin1,2. The amino-terminal VHS domains of GGAs form complexes with the cytoplasmic domains of sorting receptors by recognizing acidic-cluster dileucine (ACLL) sequences1,2,3,4,5,6. Here we report the X-ray structure of the GGA1 VHS domain alone, and in complex with the carboxy-terminal peptide of cation-independent mannose 6-phosphate receptor containing an ACLL sequence. The VHS domain forms a super helix with eight α-helices, similar to the VHS domains of TOM1 and Hrs. Unidirectional movements of helices α6 and α8, and some of their side chains, create a set of electrostatic and hydrophobic interactions for correct recognition of the ACLL peptide. This recognition mechanism provides the basis for regulation of protein transport from the TGN to endosomes/lysosomes, which is shared by sortilin and low-density lipoprotein receptor-related protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the GGA1 VHS domain in complex with the ACLL peptide and its sequence comparison with other VHS domains.
Figure 2: Surface representation of the VHS domain interacting with the CI-MPR ACLL peptide.
Figure 3: Peptide binding diagram.

Similar content being viewed by others

References

  1. Black, M. W. & Pelham, H. R. B. B. Membrane traffic: how do GGAs fit in with the adaptors? Curr. Biol. 11, R460–R462 (2001).

    Article  CAS  Google Scholar 

  2. Robinson, M. S. & Bonifacino, J. S. Adaptor-related proteins. Curr. Opin. Cell Biol. 13, 444–453 (2001).

    Article  CAS  Google Scholar 

  3. Nielsen, M. S. et al. The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J. 20, 2180–2190 (2001).

    Article  CAS  Google Scholar 

  4. Puertollano, R., Aguilar, R. C., Gorshkova, I., Crouch, R. J. & Bonifacino, J. S. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 292, 1712–1716 (2001).

    Article  ADS  CAS  Google Scholar 

  5. Takatsu, H., Katoh, Y., Shiba, Y. & Nakayama, K. Golgi-localizing, γ-adaptin ear homology domain, ADP-ribosylation factor binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM (VHS) domains. J. Biol. Chem. 276, 28541–28545 (2001).

    Article  CAS  Google Scholar 

  6. Zhu, Y., Doray, B., Poussu, A., Lehto, V. P. & Kornfeld, S. Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science 292, 1716–1718 (2001).

    Article  ADS  CAS  Google Scholar 

  7. Meyer, C. et al. µ1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J. 19, 2193–2203 (2000).

    Article  CAS  Google Scholar 

  8. Chen, H. J., Yuan, J. & Lobel, P. Systematic mutational analysis of the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor cytoplasmic domain: an acidic cluster containing a key aspartate is important for function in lysosomal enzyme sorting. J. Biol. Chem. 272, 7003–7012 (1997).

    Article  CAS  Google Scholar 

  9. Boman, A. L., Zhang, C.-J., Zhu, X. & Kahn, R. A. A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol. Biol. Cell 11, 1241–1255 (2000).

    Article  CAS  Google Scholar 

  10. Dell'Angelica, E. C. et al. GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol. 149, 81–83 (2000).

    Article  CAS  Google Scholar 

  11. Hirst, J. et al. A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J. Cell Biol. 149, 67–79 (2000).

    Article  CAS  Google Scholar 

  12. Poussu, A., Lohi, O. & Lehto, V. -P. Vear, a novel Golgi-associated protein with VHS and γ-adaptin ‘ear’ domains. J. Biol. Chem. 275, 7176–7183 (2000).

    Article  CAS  Google Scholar 

  13. Takatsu, H., Yoshino, K. & Nakayama, K. Adaptor-γ ear homology domain conserved in γ-adaptin and GGA proteins that interact with γ-synergin. Biochem. Biophys. Res. Commun. 271, 719–725 (2000).

    Article  CAS  Google Scholar 

  14. Zhdankina, O., Strand, N. L., Redmond, J. M. & Boman, A. L. Yeast GGA proteins interact with GTP-bound Arf and facilitate transport through the Golgi. Yeast 18, 1–18 (2001).

    Article  CAS  Google Scholar 

  15. Costaguta, G., Stefan, C. J., Bensen, E. S., Emr, S. D. & Payne, G. S. Yeast Gga coat proteins function with clathrin in Golgi to endosome transport. Mol. Biol. Cell 12, 1885–1896 (2001).

    Article  CAS  Google Scholar 

  16. Puertollano, R., Randazzo, P. A., Presley, J. F., Hartnell, L. M. & Bonifacino, J. S. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell 105, 93–102 (2001).

    Article  CAS  Google Scholar 

  17. Lohi, O. & Lehto, V.-P. VHS domain marks a group of proteins involved in endocytosis and vesicular trafficking. FEBS Lett. 440, 255–257 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Mao, Y. et al. Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell 100, 447–456 (2000).

    Article  CAS  Google Scholar 

  19. Misra, S., Beach, B. M. & Hurley, J. H. Structure of the VHS domain of human Tom1 (Target of Myb1): insights into interactions with proteins and membranes. Biochemistry 39, 11282–11290 (2000).

    Article  CAS  Google Scholar 

  20. Otwinoski, Z. in Data Collection and Processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, 1993).

    Google Scholar 

  21. Leslie, A. W. G. Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography Vol. 26 (Daresbury Laboratory, Warrington, 1992).

    Google Scholar 

  22. Evans, P. R. Proceedings of the CCP4 Study Weekend on Data Collection & Processing 114–122 (Daresbury Laboratory, Warrington, 1993).

    Google Scholar 

  23. Brünger, A. T. et al. Crystallography & NMR system: a new software for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  24. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  25. Navaza, J. AMORE—an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  26. Roussel, A. & Cambillau, C. Silicon Graphics Geometry Partners (Silicon Graphics, Mountain View, California, 1991).

    Google Scholar 

  27. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  29. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein. Eng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, from the Japan Society for Promotion of Science (fellowship to H.T.), and from the University of Tsukuba Research Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soichi Wakatsuki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiba, T., Takatsu, H., Nogi, T. et al. Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature 415, 937–941 (2002). https://doi.org/10.1038/415937a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415937a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing