Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional X-ray structural microscopy with submicrometre resolution

Abstract

Advanced materials and processing techniques are based largely on the generation and control of non-homogeneous microstructures, such as precipitates and grain boundaries. X-ray tomography can provide three-dimensional density and chemical distributions of such structures with submicrometre resolution1; structural methods exist that give submicrometre resolution in two dimensions2,3,4,5,6,7,8; and techniques are available for obtaining grain-centroid positions and grain-average strains in three dimensions7,9. But non-destructive point-to-point three-dimensional structural probes have not hitherto been available for investigations at the critical mesoscopic length scales (tenths to hundreds of micrometres). As a result, investigations of three-dimensional mesoscale phenomena—such as grain growth10,11, deformation12,13,14,15,16, crumpling17,18,19 and strain-gradient effects20—rely increasingly on computation and modelling without direct experimental input. Here we describe a three-dimensional X-ray microscopy technique that uses polychromatic synchrotron X-ray microbeams to probe local crystal structure, orientation and strain tensors with submicrometre spatial resolution. We demonstrate the utility of this approach with micrometre-resolution three-dimensional measurements of grain orientations and sizes in polycrystalline aluminium, and with micrometre depth-resolved measurements of elastic strain tensors in cylindrically bent silicon. This technique is applicable to single-crystal, polycrystalline, composite and functionally graded materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential-aperture X-ray (structural) microscopy depth-profiling method.
Figure 2: DAXM probe of the grain structure in polycrystalline Al.
Figure 3: DAXM orientation and strain measurements in cylindrically bent Si.
Figure 4: Depth-dependent strain tensor measurements for cylindrically bent Si.

Similar content being viewed by others

References

  1. Wang, Y. et al. A high-throughput x-ray microtomography system at the advanced photon source. Rev. Sci. Instrum. 72, 2062–2068 (2000).

    Article  ADS  Google Scholar 

  2. Di Fonzo, S. et al. Non-destructive determination of local strain with 100-nanometre spatial resolution. Nature 403, 638–640 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Bilderback, D. H., Hoffman, S. A. & Thiel, D. J. Nanometer spatial-resolution achieved in hard x-ray-imaging and Laue diffraction experiments. Science 263, 201–203 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Yun, W. et al. Nanometer focusing of hard x rays by phase zone plates. Rev. Sci. Instrum. 70, 2238–2241 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Lengeler, B. et al. A microscope for hard x rays based on parabolic compound refractive lenses. Appl. Phys. Lett. 74, 3924–3926 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Field, D. Recent advances in the application of orientation imaging. Ultramicroscopy 67, 1–9 (1997).

    Article  CAS  Google Scholar 

  7. Ice, G. E. & Larson, B. C. 3D x-ray crystal microscope. Adv. Eng. Mater. 2, 643–646 (2000).

    Article  CAS  Google Scholar 

  8. MacDowell, A. A. et al. Submicron x-ray diffraction. Nucl. Instrum. Methods A 467, 936–943 (2001).

    Article  ADS  Google Scholar 

  9. Margulies, L., Winther, G. & Poulsen, H. F. In situ measurement of grain rotation during deformation of polycrystals. Science 292, 2392–2394 (2001).

    Article  ADS  Google Scholar 

  10. Holm, E. A., Zacharopoulos, N. & Srolovitz, D. J. Nonuniform and directional grain growth caused by grain boundary mobility variations. Acta. Mater. 46, 953–964 (1998).

    Article  CAS  Google Scholar 

  11. Radhakrishnan, B., Sarma, G. B. & Zacharia, T. Modeling the kinetics and microstructural evolution during static recrystallization—Monte Carlo simulation of recrystallization. Acta Mater. 46, 4415–4433 (1998).

    Article  CAS  Google Scholar 

  12. Bulatov, V., Abraham, F. F., Kubin, L., Devincre, B. & Yip, S. Connecting atomistic and mesoscale simulations of crystal plasticity. Nature 391, 669–672 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Cleri, F., Yip, S., Wolf, D. & Phillpot, S. R. Atomic-scale mechanism of crack-tip plasticity: dislocation nucleation and crack-tip shielding. Phys. Rev. Lett. 79, 1309–1312 (1997).

    Article  ADS  CAS  Google Scholar 

  14. De la Rubia, T. D. et al. Multiscale modelling of plastic flow localization in irradiated materials. Nature 406, 871–874 (2000).

    Article  ADS  Google Scholar 

  15. Gao, H., Huang, Y. & Nix, W. D. Modeling plasticity at the micrometer scale. Naturwissenschaften 86, 507–515 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Vashishta, P., Kalia, R. K. & Nakano, A. Large-scale atomistic simulations of dynamic fracture. Comput. Sci. Eng. 1, 56–65 (1999).

    Article  CAS  Google Scholar 

  17. Boudaod, A., Patrício, P., Couder, Y. & Amar, M. B. Dynamics of singularities in a constrained elastic plate. Nature 407, 718–720 (2000).

    Article  ADS  Google Scholar 

  18. Chaı¨eb, S., Melo, F. & Géminard, J.-C. Experimental study of developable cones. Phys. Rev. Lett. 80, 2354–2357 (1998).

    Article  ADS  Google Scholar 

  19. Lobkovsky, A., Gentges, S., Li, H., Morse, D. & Witten, T. A. Scaling properties of stretching ridges in a crumpled elastic sheet. Science 270, 1482–1485 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Needleman, A. Computational mechanics at the mesoscale. Acta Mater. 48, 105–124 (2000).

    Article  MathSciNet  CAS  Google Scholar 

  21. Chung, J.-S. & Ice, G. E. Automated indexing for texture and strain measurement with broad-bandpass x-ray microbeams. J. Appl. Phys. 86, 5249–5255 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Tamura, N. et al. Strain and texture in Al-interconnect wires measured by x-ray microbeam diffraction. Mater. Res. Soc. Proc. 563, 175–180 (1999).

    Article  CAS  Google Scholar 

  23. Doherty, R. D. et al. Current issues in recrystallization: a review. Mater. Sci. Eng. A 238, 219–274 (1997).

    Article  Google Scholar 

  24. Humphreys, F. J. & Hatherly, M. Recrystallization and Related Annealing Phenomena (Pergamon, Oxford, 1995).

    Google Scholar 

  25. Kjelmstead, K. D. Fundamentals of Structural Mechanics (Prentice-Hall, London, 1997).

    Google Scholar 

  26. Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Pergamon, Oxford, 1986).

    MATH  Google Scholar 

  27. Hirsch, P. B. & Roberts, S. G. Comment on the brittle-to-ductile transition: a cooperative dislocation generation instability; dislocation dynamics and the strain-rate dependence of the transition temperature. Acta Mater. 44, 2361–2371 (1995).

    Article  Google Scholar 

  28. Khantha, M., Pope, D. P. & Vitek, V. Dislocation screening and the brittle-to-ductile transition: a Kosterlitz-Thouless type instability. Phys. Rev. Lett. 73, 684–687 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Huang, Y., Xue, Z., Gao, H., Nix, W. D. & Xia, Z. C. A study of microindentation hardness tests by mechanism-based strain gradient plasticity. J. Mater. Res. 15, 1786–1796 (2000).

    Article  ADS  CAS  Google Scholar 

  30. Fleck, N. A. & Hutchinson, J. W. Strain-gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Weiland, A. El-Azab, D. Maroudas and I. C. Noyan for discussions, and K.-S. Chung, W. Liu, J.-S. Chung, N. Tamura, E. Williams, W. P. Lowe and E. Dufresne for their contributions during this work. W.Y. is an ORISE fellow. The measurements were performed on the MHATT-CAT beam line at the Advanced Photon Source (APS), which is supported by the US Department of Energy, Office of Science. This research was sponsored by the US Department of Energy Basic Energy Sciences, Division of Materials Sciences, under contract with Oak Ridge National Laboratory, managed by UT-Battelle, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Larson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larson, B., Yang, W., Ice, G. et al. Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415, 887–890 (2002). https://doi.org/10.1038/415887a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415887a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing