Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phospholipase Cγ1 is a physiological guanine nucleotide exchange factor for the nuclear GTPase PIKE

Abstract

Phospholipase Cγ1 (PLC-γ1) hydrolyses phosphatidylinositol-4,5-bisphosphate to the second messengers inositol-1,4,5-trisphosphate and diacylglycerol. PLC-γ1 also has mitogenic activity upon growth-factor-dependent tyrosine phophorylation1,2; however, this activity is not dependent on the phospholipase activity of PLC-γ1, but requires an SH3 domain3,4. Here, we demonstrate that PLC-γ1 acts as a guanine nucleotide exchange factor (GEF) for PIKE (phosphatidylinositol-3-OH kinase (PI(3)K) enhancer). PIKE is a nuclear GTPase that activates nuclear PI(3)K activity, and mediates the physiological activation by nerve growth factor (NGF) of nuclear PI(3)K activity5. This enzymatic activity accounts for the mitogenic properties of PLC-γ1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding of Myc-PIKE to different GST–SH3 domain fusion proteins.
Figure 2: The SH3 domain of PLC-γ functions as a nucleotide exchange factor for PIKE.
Figure 3: PIKE associates with PLC-γ1.
Figure 4: PLC-γ1 associates with PIKE in PC12 cells in a GDP-dependent way.
Figure 5: The SH3 domain of PLC-γ is required for the activation of PIKE and nuclear PI(3)K.

Similar content being viewed by others

References

  1. Bae, S. S. et al. Src homology domains of phospholipase Cγ1 inhibit nerve growth factor-induced differentiation of PC12 cells. J. Neurochem. 71, 178–185 (1998).

    Article  CAS  Google Scholar 

  2. Smith, M. R. et al. Overexpression of phosphoinositide-specific phospholipase Cγ in NIH 3T3 cells promotes transformation and tumorigenicity. Carcinogenesis 19, 177–185 (1998).

    Article  CAS  Google Scholar 

  3. Smith, M. R. et al. Phospholipase C-γ1 can induce DNA synthesis by a mechanism independent of its lipase activity. Proc. Natl Acad. Sci. USA 91, 6554–6558 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Huang, P. S. et al. An SH3 domain is required for the mitogenic activity of microinjected phospholipase C-γ1. FEBS Lett. 358, 287–292 (1995).

    Article  CAS  Google Scholar 

  5. Ye, K. et al. Pike. A nuclear gtpase that enhances PI3 kinase activity and is regulated by protein 4.1N. Cell 103, 919–930 (2000).

    Article  CAS  Google Scholar 

  6. Pawson, T. & Gish, G. D. SH2 and SH3 domains: from structure to function. Cell 71, 359–362 (1992).

    Article  CAS  Google Scholar 

  7. Gout, I. et al. The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 75, 25–36 (1993).

    Article  CAS  Google Scholar 

  8. Yu, H. et al. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76, 933–945 (1994).

    Article  CAS  Google Scholar 

  9. Irvin, B. J., Williams, B. L., Nilson, A. E., Maynor, H. O. & Abraham, R. T. Pleiotropic contributions of phospholipase C-γ1 (PLC-γ1) to T-cell antigen receptor-mediated signaling: reconstitution studies of a PLC-γ1-deficient Jurkat T-cell line. Mol. Cell Biol. 20, 9149–9161 (2000).

    Article  CAS  Google Scholar 

  10. Munder, T. & Furst, P. The Saccharomyces cerevisiae CDC25 gene product binds specifically to catalytically inactive ras proteins in vivo. Mol. Cell Biol. 12, 2091–2099 (1992).

    Article  CAS  Google Scholar 

  11. Lai, C. C., Boguski, M., Broek, D. & Powers, S. Influence of guanine nucleotides on complex formation between Ras and CDC25 proteins. Mol. Cell Biol. 13, 1345–1352 (1993).

    Article  CAS  Google Scholar 

  12. Marmiroli, S. et al. Interleukin 1α stimulates nuclear phospholipase C in human osteosarcoma SaOS-2 cells. J. Biol. Chem. 269, 13–16 (1994).

    CAS  PubMed  Google Scholar 

  13. Zini, N. et al. The intranuclear amount of phospholipase Cβ1 decreases following cell differentiation in Friend cells, whereas γ1 isoform is not affected. Eur. J. Cell Biol. 68, 25–34 (1995).

    CAS  PubMed  Google Scholar 

  14. Neri, L. M., Borgatti, P., Capitani, S. & Martelli, A. M. Nuclear diacylglycerol produced by phosphoinositide-specific phospholipase C is responsible for nuclear translocation of protein kinase C-α. J. Biol. Chem. 273, 29738–29744 (1998).

    Article  CAS  Google Scholar 

  15. Martelli, A. M. et al. Phosphoinositide signaling in nuclei of Friend cells: phospholipase C beta down-regulation is related to cell differentiation. Cancer Res. 54, 2536–2540 (1994).

    CAS  PubMed  Google Scholar 

  16. Bertagnolo, V. et al. Identification of PI-PLC β1, γ1, and δ1 in rat liver: subcellular distribution and relationship to inositol lipid nuclear signalling. Cell Signal 7, 669–678 (1995).

    Article  CAS  Google Scholar 

  17. Bertagnolo, V., Marchisio, M., Volinia, S., Caramelli, E. & Capitani, S. Nuclear association of tyrosine-phosphorylated Vav to phospholipase C-γ1 and phosphoinositide 3-kinase during granulocytic differentiation of HL-60 cells. FEBS Lett. 441, 480–484 (1998).

    Article  CAS  Google Scholar 

  18. Carpenter, G. & Ji, Q. Phospholipase C-γ as a signal-transducing element. Exp. Cell Res. 253, 15–24 (1999).

    Article  CAS  Google Scholar 

  19. Smith, M. R. et al. PLC-γ1 Src homology domain induces mitogenesis in quiescent NIH 3T3 fibroblasts. Biochem. Biophys. Res. Commun. 222, 186–193 (1996).

    Article  CAS  Google Scholar 

  20. Cherfils, J. & Chardin, P. GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem. Sci. 24, 306–311 (1999).

    Article  CAS  Google Scholar 

  21. Quilliam, L. A., Khosravi-Far, R., Huff, S. Y. & Der, C. J. Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. Bioessays 17, 395–404 (1995).

    Article  CAS  Google Scholar 

  22. Kim, M. J. et al. Direct interaction of SOS1 Ras exchange protein with the SH3 domain of phospholipase C-γ1. Biochemistry 39, 8674–8682 (2000).

    Article  CAS  Google Scholar 

  23. Pei, Z., Maloney, J. A., Yang, L. & Williamson, J. R. A new function for phospholipase C-γ1: coupling to the adaptor protein GRB2. Arch. Biochem. Biophys. 345, 103–110 (1997).

    Article  CAS  Google Scholar 

  24. Scholler, J. K., Perez-Villar, J. J., O'Day, K. & Kanner, S. B. Engagement of the T lymphocyte antigen receptor regulates association of son-of-sevenless homologues with the SH3 domain of phospholipase Cγ. Eur. J. Immunol. 30, 2378–2387 (2000).

    Article  CAS  Google Scholar 

  25. Ye, K., Compton, D. A., Lai, M. M., Walensky, L. D. & Snyder, S. H. Protein 4.1N binding to nuclear mitotic apparatus protein in PC12 cells mediates the antiproliferative actions of nerve growth factor. J. Neurosci. 19, 10747–10756 (1999).

    Article  CAS  Google Scholar 

  26. Rosen, L. B., Ginty, D. D., Weber, M. J. & Greenberg, M. E. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12, 1207–1221 (1994).

    Article  CAS  Google Scholar 

  27. Ruderman, N. B., Kapeller, R., White, M. F. & Cantley, L. C. Activation of phosphatidylinositol 3-kinase by insulin. Proc. Natl Acad. Sci. USA 87, 1411–1415 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Shou, C., Farnsworth, C. L., Neel, B. G. & Feig, L. A. Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21. Nature 358, 351–354 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Carpenter and G. Shawn for some of the plasmids. This work is supported by United States Public Health Service grants (S.H.S.), and Research Scientist Award (S.H.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon H. Snyder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, K., Aghdasi, B., Luo, H. et al. Phospholipase Cγ1 is a physiological guanine nucleotide exchange factor for the nuclear GTPase PIKE. Nature 415, 541–544 (2002). https://doi.org/10.1038/415541a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415541a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing