Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The fate of carbon in grasslands under carbon dioxide enrichment

Abstract

The concentration of carbon dioxide (CO2) in the Earth's atmosphere is rising rapidly1, with the potential to alter many ecosystem processes. Elevated CO2 often stimulates photosynthesis2, creating the possibility that the terrestrial biosphere will sequester carbon in response to rising atmospheric CO2 concentration, partly offsetting emissions from fossil-fuel combustion, cement manufacture, and deforestation3,4. However, the responses of intact ecosystems to elevated CO2 concentration, particularly the below-ground responses, are not well understood. Here we present an annual budget focusing on below-ground carbon cycling for two grassland ecosystems exposed to elevated CO2 concentrations. Three years of experimental CO2 doubling increased ecosystem carbon uptake, but greatly increased carbon partitioning to rapidly cycling carbon pools below ground. This provides an explanation for the imbalance observed in numerous CO2 experiments, where the carbon increment from increased photosynthesis is greater than the increments in ecosystem carbon stocks. The shift in ecosystem carbon partitioning suggests that elevated CO2 concentration causes a greater increase in carbon cycling than in carbon storage in grasslands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Soil δ13C (0–15 cm) as a function of time.
Figure 3: Annual carbon fluxes in g C m−2 yr−1 for 1994 in the sandstone grassland in ambient (white boxes) and elevated (black boxes) CO2.
Figure 4: Partitioning below-ground respiration using the 13C isotope tracer in the microcosm experiment.

Similar content being viewed by others

References

  1. Schimel, D.et al. in Climate Change 1995: The Science of Climate Change(eds Houghton, J. T. et al.) 65–131 (Cambridge Univ. Press, (1996)).

    Google Scholar 

  2. Long, S. P. & Drake, B. G. in Topics in Photosynthesis(eds Baker, N. R. & Thomas, H.) 69–107 (Elsevier, Amsterdam, (1992)).

    Google Scholar 

  3. Broecker, W. S., Takahashi, T., Simpson, H. J. & Peng, T. H. Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206, 409–418 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Gifford, R. M. Carbon dioxide and plant growth under water and light stress, implications for balancing the global carbon budget. Search 10, 316–318 (1979).

    Google Scholar 

  5. Drake, B. G. & Leadley, P. W. Canopy photosynthesis of crops and native plants exposed to long-term elevated CO2: commissioned review. Plant Cell Env. 14, 853–860 (1991).

    Article  Google Scholar 

  6. Canadell, J. G., Pitelka, L. F. & Ingram, J. S. I. The effects of elevated CO2on plant-soil carbon below ground: a synthesis. Plant Soil 187, 391–400 (1996).

    Article  CAS  Google Scholar 

  7. Schimel, D. S. Terrestrial ecosystems and the carbon cycle. Global Change Biol. 1, 77–91 (1995).

    Article  ADS  Google Scholar 

  8. Harrison, K., Broecker, W. & Bonani, G. Astrategy for estimating the impact of CO2 fertilisation on soil carbon storage. Global Biogeochem. Cycles 7, 69–80 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Hilbert, D. W., Larigauderie, A. & Reynolds, J. F. The influence of carbon dioxide and daily photon-flux density on optimal leaf nitrogen concentration and root:shoot ratio. Ann. Bot. 68, 365–376 (1991).

    Article  CAS  Google Scholar 

  10. Luo, Y., Field, C. B. & Mooney, H. A. Predicting responses of photosynthesis and root fraction to elevated CO2: Interactions among carbon, nitrogen, and growth. Plant Cell Env. 17, 1195–1204 (1994).

    Article  Google Scholar 

  11. Field, C. B., Chapin, F. S. II, Matson, P. A. & Mooney, H. A. Responses of terrestrial ecosystems to the changing atmosphere: A resource-based approach. Annu. Rev. Ecol. Syst. 23, 201–235 (1992).

    Article  Google Scholar 

  12. van Veen, J. A., Liljeroth, E. L., Lekkerkerk, J. A. & van de Geijn, S. C. Carbon fluxes in plant-soil systems at elevated atmospheric CO2 levels. Ecol. Appl. 2, 175–181 (1991).

    Article  Google Scholar 

  13. van de Geijn, S. C. & van Veen, J. A. Implications of increased carbon dioxide levels for carbon input and turnover in soils. Vegetatio 104/105, 283–292 (1993).

    Article  Google Scholar 

  14. Stulen, I. & den Hertog, J. Root growth and functioning under atmospheric CO2 enrichment. Vegetatio 104/105, 99–115 (1993).

    Article  Google Scholar 

  15. Rogers, H. H., Runion, G. B. & Krupa, S. V. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Env. Pollut. 83, 155–189 (1994).

    Article  CAS  Google Scholar 

  16. Norby, R. J. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant Soil 165, 9–20 (1994).

    Article  CAS  Google Scholar 

  17. Hickman, J. C. The Jepson Manual: Higher Plants of California(Univ. California Press, Berkeley, (1993)).

    Google Scholar 

  18. Field, C. B., Chapin, F. S. II, Chiariello, N. R., Holland, E. A. & Mooney, H. A. in Carbon Dioxide and Terrestrial Ecosystems(eds Koch, G. W. & Mooney, H. A.) 121–145 (Academic, Sand Diego, (1996)).

    Book  Google Scholar 

  19. Jackson, R. B., Sala, O. E., Field, C. B. & Mooney, H. A. CO2 alters water use, carbon gain, and yield for the dominant species in a natural grassland. Oecologia 98, 257–262 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Hungate, B. A., Jackson, R. B., Field, C. B. & Chapin, F. S. II Detecting changes in soil carbon in CO2 enrichment experiments. Plant Soil 187, 135–145 (1996).

    Article  CAS  Google Scholar 

  21. Thompson, M. V., Randerson, J. T., Malmström, C. M. & Field, C. B. Change in net primary production and heterotrophic respiration: how much is necessary to sustain the terrestrial sink? Global Biogeochem. Cycles 10, 711–726 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Luo, Y., Jackson, R. B., Field, C. B. & Mooney, H. A. Elevated CO2 increases belowground respiration in California grasslands. Oecologia 108, 130–137 (1996).

    Article  ADS  Google Scholar 

  23. Raich, J. W. & Nadelhoffer, K. J. Belowground carbon allocation in forest ecosystems: global trends. Ecology 70, 1346–1354 (1989).

    Article  Google Scholar 

  24. Higgins, P. A. T. thesis, Stanford Univ. (1996).

  25. Chiariello, N. R. & Field, C. B. in Community, Population and Evolutionary Responses to Elevated Carbon Dioxide Concentration(eds Körner, C. & Bazzaz, F. A.) 139–175 (Academic, San Diego, (1996)).

    Google Scholar 

  26. Drake, B. G.et al. Acclimation of photosynthesis, respiration, and ecosystem carbon flux of wetland on Chesapeake Bay, Maryland, to elevated atmospheric CO2 concentrations. Plant Soil 187, 111–118 (1996).

    Article  CAS  Google Scholar 

  27. Parton, W. J., Schimel, D. S., Cole, C. V. & Ojima Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 51, 1173–1179 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Oades, J. M. The retention of organic matter in soils. Biogeochemistry 5, 35–70 (1988).

    Article  CAS  Google Scholar 

  29. Parton, W. J.et al. Impact of climate change on grassland production and soil carbon worldwide. Global Change Biol. 1, 13–22 (1995).

    Article  ADS  Google Scholar 

  30. Ham, J. M., Owensby, C. E., Coyne, P. I. & Bremer, D. J. Fluxes of CO2 and water vapor from a prairie ecosystem exposed to ambient and elevated atmospheric CO2. Agric. For. Meteorol. 77, 73–93 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. Chiariello, C. Chu, G. Joel, Y. Luo, B. Mortimer, E. Nelson, J.Randerson, H. Reynolds, J. des Rosier, S. Thayer and J. Whitbeck for contributions to the design and execution of the experiment; H. Whitted for help with experimental design and construction; P. Canadell, Z.Cardon, R. Martin and A. Townsend for assistance and advice with the 13CO2 labelling, sampling and interpretation; J. Sulzman for help with the figures; and D. Schimel for help with the isotope calculations. The Jasper Ridge CO2 experiment is supported by grants from the US NSF to the Carnegie Institution of Washington, Stanford University and the University of California, Berkeley. B.A.H. was supported by a National Defense Science and Engineering graduate fellowship and an NSF doctoral dissertation improvement grant. R.B.J. was supported by a grant from NIGEC/DOE and a DOE distinguished postdoctoral fellowship for global change. The National Center for Atmospheric Research is sponsored by the NSF. This is publication number 1344 from the Carnegie Institution of Washington, Department of Plant Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Hungate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hungate, B., Holland, E., Jackson, R. et al. The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388, 576–579 (1997). https://doi.org/10.1038/41550

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41550

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing