Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Myocyte renewal and ventricular remodelling

Abstract

Remaining young at heart is a desirable but elusive goal. Unbeknown to us, however, myocyte regeneration may accomplish just that. Continuous cell renewal in the adult myocardium was thought to be impossible, but multipotent cardiac stem cells may be able to renew the myocardium and, under certain circumstances, can be coaxed to repair the broken heart after infarction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myocyte division.
Figure 2: Primitive cells and myocyte ageing.
Figure 3
Figure 4: Myocardial repair.

Similar content being viewed by others

References

  1. Horner, P. J. & Gage, F. H. Regenerating the damaged central nervous system. Nature 407, 963–970 (2000).

    ADS  CAS  PubMed  Google Scholar 

  2. Soonpaa, M. H. & Field, L. I. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ. Res. 83, 15–26 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Molkentin, J. D. & Dorn, G. W. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63, 391–426 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Anversa, P. & Kajstura, J. Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ. Res. 83, 1–14 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Kajstura, J. et al. Myocyte proliferation in end-stage cardiac failure in humans. Proc. Natl Acad. Sci. USA 95, 8801–8805 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beltrami, A. P. et al. Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med. 344, 1750–1757 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Li, J. M., Poolman, R. A. & Brooks, G. Role of G1 phase cyclins and cyclin-dependent kinases during cardiomyocyte hypertrophic growth in rats. Am. J. Physiol. 275, H814–H822 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Oh, H. et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy and survival. Proc. Natl Acad. Sci. USA 98, 10308–10313 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Setoguchi, M. et al. Activation of cyclins and cyclin-dependent kinases, DNA synthesis, and myocyte mitotic division in pacing-induced heart failure in dogs. Lab. Invest. 79, 1545–1558 (1999).

    CAS  PubMed  Google Scholar 

  10. Kajstura, J. et al. Telomere shortening is an in vivo marker of myocyte replication and aging. Am. J. Pathol. 156, 813–819 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leri, A., Malhotra, A., Liew, C-C., Kajstura, J. & Anversa, P. Telomerase activity in rat cardiac myocytes is age and gender dependent. J. Mol. Cell. Cardiol. 32, 385–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Leri, A. et al. Telomerase expression and activity are coupled with myocyte proliferation and preservation of telomeric length in the failing heart. Proc. Natl Acad. Sci. USA 98, 8626–8631 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hirzel, H. O., Nelson, G. R., Sonnenblick, E. H. & Kirk, E. S. Redistribution of collateral blood flow from necrotic to surviving myocardium following coronary occlusion in the dog. Circ. Res. 39, 214–222 (1976).

    Article  CAS  PubMed  Google Scholar 

  14. Olivetti, G. et al. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J. Mol. Cell. Cardiol. 28, 1463–1477 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Kajstura, J. et al. Myocyte cellular hyperplasia and myocyte cellular hypertrophy contribute to chronic ventricular remodeling in coronary artery narrowing-induced cardiomyopathy in rats. Circ. Res. 74, 383–400 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Lyman, S. D. & Jacobsen S. E. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 91, 1101–1134 (1998).

    CAS  PubMed  Google Scholar 

  17. Jiang, X. et al. Structure of the active core of human stem cell factor and analysis of binding to its receptor Kit. EMBO J. 19, 3192–3203 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bunting, K. D., Zhou, S., Lu, T. & Sorrentino B. P. Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo. Blood 96, 902–909 (2000).

    CAS  PubMed  Google Scholar 

  19. Bakos, E. et al. Characterization of the amino-terminal regions in the human multidrug resistance protein. J. Cell Sci. 113, 4451–4461 (2000)

    CAS  PubMed  Google Scholar 

  20. van der Rijn, M., Heimfeld, S., Spangruade, G. J. & Weissman I. L. Mouse hematopoietic stem-cell antigen Sca-1 is a member of the Ly-6 antigen family. Proc. Natl Acad. Sci. USA 86, 4634–4638 (1989).

    Article  ADS  Google Scholar 

  21. Kissel, H. et al. Point mutation in Kit receptor tyrosine kinase reveals essential roles for Kit signaling in spermatogenesis and oogenesis without affecting other Kit responses. EMBO J. 19, 1312–1326 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Demeule, M., Labelle, M. Regina, A., Berthelet, F. & Beliveau, R. Isolation of endothelial cells from brain, lung and kidney: expression of the multidrug resistance P-glycoprotein isoforms. Biochem. Biophys. Res. Commun. 281, 827–834 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Geick, A., Eichelbaum, M. & Burk, O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J. Biol. Chem. 276, 14581–14587 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. English, A., Kosoy, R., Pawlinski, R. & Bamezai, A. A monoclonal antibody against the 66-kDa protein expressed in mouse spleen and thymus inhibits Ly-6A. 2-dependent cell–cell adhesion. J. Immunol. 165, 3763–3771 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Orlic, D. et al. Mobilized bone marrow cells repair the infarcted heart improving function and survival. Proc. Natl Acad. Sci. USA 98, 10344–10349 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Teyssier-Le Discorde, M., Prost, S., Nandrot, E. & Kirszenbaum, M. Spatial and temporal mapping of c-kit and its ligand, stem cell factor expression during human embryonic haemopoiesis. Br. J. Haematol. 107, 247–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Kunisada, T. et al. Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors. Development 125, 2915–2923 (1998).

    CAS  PubMed  Google Scholar 

  29. van Dijk, T. B. et al. Stem cell factor induces phosphatidylinositol 3′-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells. Blood 96, 3406–3413 (2000).

    CAS  PubMed  Google Scholar 

  30. Morrison, S. J., Shah, N. M. & Anderson, D. J. Regulatory mechanisms in stem cell biology. Cell 88, 287–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Tomita, S. et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100, II-247–II-256 (1999).

    Article  CAS  Google Scholar 

  32. Kocher, A. A. et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Med. 7, 430–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Jackson, K. A. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Greider, C. W. Telomerase activity, proliferation and cancer. Proc. Natl Acad. Sci. USA 95, 90–92 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin-Rivera, L., Herrera, E., Albar, J. P. & Blasco, M. A. Expression of mouse telomerase catalytic subunit in embryos and adult tissues. Proc. Natl Acad. Sci. USA 95, 10471–10476 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vaziri, H. et al. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc. Natl Acad. Sci. USA 91, 9857–9860 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, K. et al. Constitutive and regulated expression of telomerase reverse transcriptase (hTERT) in human lymphocytes. Proc. Natl Acad. Sci. USA 27, 5147–5152 (1999).

    Article  ADS  Google Scholar 

  38. Mattson, M. & Klapper, W. Emerging roles for telomerase in neuronal development and apoptosis. J. Neurosci. Res. 63, 1–9 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Olivetti, G., Melissari, M., Capasso, J.,M., & Anversa, P. Cardiomyopathy of the aging human heart. Circ. Res. 68, 1560–1568 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Kajstura, J. et al. Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am. J. Physiol. 271, H1215–H1228 (1996).

    CAS  PubMed  Google Scholar 

  41. Anversa, P. & Olivetti, G. in Handbook of Physiology, Section 2: The Cardiovascular System, Volume I: The Heart (eds Page, E., Fozzard, H. & Solaro, J.) 75–144 (Oxford Univ. Press, New York, 2001).

    Google Scholar 

  42. Hara, E. et al. Regulation of p16INK4 expression and implication for cell immortalization and senescence. Mol. Cell. Biol. 16, 859–867 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maggioni A. P. et al. Age-related increase in mortality among patients with first myocardial infarctions treated with thrombolysis. N. Engl. J. Med. 329, 1442–1448 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Taylor, D. A et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nature Med. 4, 929–933 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Menasché, P. et al. Myoblast transplantation for heart failure. Lancet 357, 279–280 (2001).

    Article  PubMed  Google Scholar 

  46. Murray, C. E., Wiseman, R. W., Schwartz, S. M. & Hauschka, S. D. Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Invest. 98, 2512–2523 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

Our work is supported by NIH grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Anversa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anversa, P., Nadal-Ginard, B. Myocyte renewal and ventricular remodelling. Nature 415, 240–243 (2002). https://doi.org/10.1038/415240a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/415240a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing