Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

phot1 and phot2 mediate blue light regulation of stomatal opening

Abstract

The stomatal pores of higher plants allow for gaseous exchange into and out of leaves. Situated in the epidermis, they are surrounded by a pair of guard cells which control their opening in response to many environmental stimuli, including blue light1,2. Opening of the pores is mediated by K+ accumulation in guard cells through a K+ channel and driven by an inside-negative electrical potential3. Blue light causes phosphorylation and activation of the plasma membrane H+-ATPase that creates this potential1,2,4,5,6. Thus far, no blue light receptor mediating stomatal opening has been identified7, although the carotenoid, zeaxanthin, has been proposed2,8. Arabidopsis mutants deficient in specific blue-light-mediated responses have identified7,9,10,11,12,13,14 four blue light receptors, cryptochrome 1 (cry1), cryptochrome 2 (cry2), phot1 and phot2. Here we show that in a double mutant of phot1 and phot2 stomata do not respond to blue light although single mutants are phenotypically normal. These results demonstrate that phot1 and phot2 act redundantly as blue light receptors mediating stomatal opening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analyses of Arabidopsis blue-light photoreceptor mutants.
Figure 2: Stomatal opening under blue light.
Figure 3: Amount of plasma membrane H+-ATPase, fusicoccin-induced stomatal opening, and blue light-dependent H+ extrusion in Arabidopsis blue light photoreceptor mutants.

Similar content being viewed by others

References

  1. Assmann, S. M. Signal transduction in guard cells. Annu. Rev. Cell Biol. 9, 345–375 (1993).

    Article  CAS  Google Scholar 

  2. Schroeder, J. I., Allen, G. J., Hugouvieux, V., Kwak, J. M. & Waner, D. Guard cell signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 627–658 (2001).

    Article  CAS  Google Scholar 

  3. Schroeder, J. I., Raschke, K. & Neher, E. Voltage dependence of K+ channels in guard cell protoplasts. Proc. Natl Acad. Sci. USA 84, 4108–4112 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Assmann, S. M., Simoncini, L. & Schroeder, J. I. Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba L. Nature 318, 285–287 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Shimazaki, K., Iino, M. & Zeiger, E. Blue light-dependent proton extrusion by guard-cell protoplasts of Vicia faba. Nature 319, 324–326 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Kinoshita, T. & Shimazaki, K. Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J. 18, 5548–5558 (1999).

    Article  CAS  Google Scholar 

  7. Briggs, W. R. & Huala, E. Blue-light photoreceptors in higher plants. Annu. Rev. Cell Dev. 15, 33–62 (1999).

    Article  CAS  Google Scholar 

  8. Zeiger, E. & Zhu, J. Role of zeaxanthin in blue light photoreception and modulation of light-CO2 interactions in guard cells. J. Exp. Bot. 49, 433–442 (1998).

    Article  Google Scholar 

  9. Ahmad, M. & Cashmore, A. R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366, 162–166 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Briggs, W. R. et al. The phototropin family of photoreceptors. Plant Cell 13, 993–997 (2001).

    Article  CAS  Google Scholar 

  11. Huala, E. et al. Arabidopsis NPH1: A protein kinase with a putative redox-sensing domain. Science 278, 2121–2123 (1997).

    Article  ADS  Google Scholar 

  12. Sakai, T. et al. Arabidopsis nph1 and npl1: Blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl Acad. Sci. USA 98, 6969–6974 (2001).

    Article  ADS  CAS  Google Scholar 

  13. Kagawa, T. et al. Arabidopsis NPL1: A phototropin homolog controlling the chloroplast high-light avoidance response. Science 291, 2138–2141 (2001).

    Article  ADS  CAS  Google Scholar 

  14. Jarillo, J. A. et al. Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410, 952–954 (2001).

    Article  ADS  CAS  Google Scholar 

  15. Baum, G., Long, J. C., Jenkins, G. I. & Trewavas, A. J. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc. Natl Acad. Sci. USA 96, 13554–13559 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Shimazaki, K., Goh, C. H. & Kinoshita, T. Involvement of intracellular Ca2+ in blue light-dependent proton pumping in guard cell protoplasts from Vicia faba. Physiol. Plant. 105, 554–561 (1999).

    Article  CAS  Google Scholar 

  17. Christie, J. M., Salomon, M., Nozue, K., Wada, M. & Briggs, W. R. LOV (light, oxygen, or voltage) domains of the blue light photoreceptor phototropin (nph1): Binding sites for the chromophore flavin mononucleotide. Proc. Natl Acad. Sci. USA 96, 8779–8783 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Karlsson, P. E. Blue light regulation of stomata in wheat seedlings. II. Action spectrum and search for action dichroism. Physiol. Plant. 66, 207–210 (1986).

    Article  Google Scholar 

  19. Eisinger, W., Swartz, T. E., Bogomolni, R. A. & Taiz, L. The ultraviolet action spectrum for stomatal opening in broad bean. Plant Physiol. 122, 99–105 (2000).

    Article  CAS  Google Scholar 

  20. Lasceve, G. et al. Arabidopsis contains at least four independent blue-light-activated signal transduction pathways. Plant Physiol. 120, 605–614 (1999).

    Article  CAS  Google Scholar 

  21. Niyogi, K. K., Grossman, A. R. & Bjorkman, O. Arabidopsis mutants define a central role for the xanthrophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10, 1121–1134 (1998).

    Article  CAS  Google Scholar 

  22. Schwartz, A. & Zeiger, E. Metabolic energy for stomatal opening. Role of photophosphorylation and oxidative phosphorylation. Planta 161, 129–136 (1984).

    Article  CAS  Google Scholar 

  23. Eckert, M. & Kaldenhoff, R. Light-induced stomatal movement of selected Arabidopsis thaliana mutants. J. Exp. Bot. 51, 1435–1442 (2000).

    Article  CAS  Google Scholar 

  24. Ballio, A. et al. Fusicoccin: A new wilting toxin produced by Fusicoccum amygdali Del. Nature 203, 297 (1964).

    Article  ADS  CAS  Google Scholar 

  25. Willmer, C. & Fricker, M. D. Stomata 2nd edn (Chapman & Hall, London, 1996).

    Book  Google Scholar 

  26. Iino, M., Ogawa, T. & Zeiger, E. Kinetic properties of blue light response of stomata. Proc. Natl Acad. Sci. USA 82, 8019–8023 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Chomczynski, P. & Sacchi, N. Single step-method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  28. Merlot, S., Gosti, F., Guerrier, D., Vavasseur, A. & Giraudat, J. The ABI1 and ABI2 protein phosphatase 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J. 25, 295–303 (2001).

    Article  CAS  Google Scholar 

  29. Kondo, N. & Sugahara, K. Changes in transpiration rate of SO2-resistant and -sensitive plants with SO2 fumigation and the participation of abscisic acid. Plant Cell Physiol. 19, 365–373 (1978).

    Article  CAS  Google Scholar 

  30. Bradford, M. M. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Silverthorne for a critical reading of the manuscript. This work was supported in part by a grant from the research fellowships of the Japan Society for the Promotion of Science for Young Scientists to T. Kinoshita and N.S., a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports and Culture of Japan to K.S. and M.W., and Kyushu University Interdisciplinary Programmes in Education and Projects in Research Development to K.S. This work was also supported partly by the PROBRAIN and NOVARTIS to M.W. and partly by a grant from PRESTO, Japan Science and Technology Corporation (T. Kagawa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichiro Shimazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinoshita, T., Doi, M., Suetsugu, N. et al. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656–660 (2001). https://doi.org/10.1038/414656a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/414656a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing