Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Representation of motion boundaries in retinotopic human visual cortical areas

Abstract

Edges are important in the interpretation of the retinal image. Although luminance edges have been studied extensively, much less is known about how or where the primate visual system detects boundaries defined by differences in surface properties such as texture, motion or binocular disparity. Here we use functional magnetic resonance imaging (fMRI) to localize human visual cortical activity related to the processing of one such higher-order edge type: motion boundaries. We describe a robust fMRI signal that is selective for motion segmentation. This boundary-specific signal is present, and retinotopically organized, within early visual areas, beginning in the primary visual cortex (area V1). Surprisingly, it is largely absent from the motion-selective area MT/V5 and far extrastriate visual areas. Changes in the surface velocity defining the motion boundaries affect the strength of the fMRI signal. In parallel psychophysical experiments, the perceptual salience of the boundaries shows a similar dependence on surface velocity. These results demonstrate that information for segmenting scenes by relative motion is represented as early as V1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The motion segmentation fMRI signal and its anatomical distribution.
Figure 2: A circular motion boundary produces modulated fMRI activity at the cortical representation of that circle.
Figure 4: The modulated component of the fMRI segmentation signal varies with the perceptual salience of the motion boundary display.
Figure 3: Tuning of the fMRI segmentation signal in three visual areas as a function of boundary density.

Similar content being viewed by others

References

  1. Braddick, O. Ashort-range process in apparent motion. Vision Res. 14, 519–527 (1974).

    Article  CAS  Google Scholar 

  2. Regan, D., Giaschi, D., Sharpe, J. A. & Hong, X. H. Visual processing of motion-defined form: selective failure in patients with parietotemporal lesions. J. Neurosci. 12, 2198–2210 (1992).

    Article  CAS  Google Scholar 

  3. Dick, M., Ullman, S. & Sagi, D. Parallel and serial processes in motion detection. Science 237, 400–402 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Lamme, V. A., van Dijk, B. W. & Spekreijse, H. Contour from motion processing occurs in primary visual cortex. Nature 363, 541–543 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Vaina, L. M., Grzywacz, N. M. & Kikinis, R. Segregation of computations underlying perception of motion discontinuity and coherence. Neuroreport 5, 2289–2294 (1994).

    Article  CAS  Google Scholar 

  6. Murakami, I. & Shimojo, S. Modulation of motion aftereffect by surround motion and its dependence on stimulus size and eccentricity. Vision Res. 35, 1835–1844 (1995).

    Article  CAS  Google Scholar 

  7. Nakayama, K. & Loomis, J. M. Optimal velocity patterns, velocity-sensitive neurons, and space perception: a hypothesis. Perception 3, 63–80 (1974).

    Article  CAS  Google Scholar 

  8. Patzwahl, D. R., Zanker, J. M. & Altenmuller, E. O. Cortical potentials reflecting motion processing in humans. Vis. Neurosci. 11, 1135–1147 (1994).

    Article  CAS  Google Scholar 

  9. Orban, G. A. et al. Amotion area in human visual cortex. Proc. Natl Acad. Sci. USA 92, 993–997 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Lagae, L., Gulyas, S., Raiguel, S. & Orban, G. A. Laminar analysis of motion information processing in macaque V5. Brain Res. 496, 361–367 (1989).

    Article  CAS  Google Scholar 

  11. Engel, S. A. et al. fMRI of human visual cortex. Nature 369, 525 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Sereno, M. I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  ADS  CAS  Google Scholar 

  13. DeYoe, E. A. et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl Acad. Sci. USA 93, 2382–2386 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Tootell, R. B. H. et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci. 15, 3215–3230 (1995).

    Article  CAS  Google Scholar 

  15. Reppas, J. B., Dale, A. M., Sereno, M. I. & Tootell, R. B. H. La vision: une perception subjective. La Recherche 289, 52–56 (1996).

    Google Scholar 

  16. Maunsell, J. H. R. & van Essen, D. C. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J. Neurophysiol. 49, 1127–1147 (1983).

    Article  CAS  Google Scholar 

  17. Braddick, O. Segmentation versus integration in visual motion processing. Trends Neurosci. 16, 263–268 (1993).

    Article  CAS  Google Scholar 

  18. Snowden, R. J., Treue, S., Erickson, R. E. & Andersen, R. A. The response of area MT and V1 neurons to transparent motion. J. Neurosci. 11, 2768–2785 (1991).

    Article  CAS  Google Scholar 

  19. van Doorn, A. J. & Koenderink, J. J. Spatial properties of the visual detectability of moving spatial white noise. Exp. Brain Res. 45, 189–195 (1982).

    Article  CAS  Google Scholar 

  20. Banton, T. & Levi, D. M. The perceived strength of motion-defined edges. Perception 22, 1195–1204 (1993).

    Article  CAS  Google Scholar 

  21. Sachtler, W. L. & Zaidi, Q. Visual processing of motion boundaries Vision Res. 35, 807–826 (1995).

    Article  CAS  Google Scholar 

  22. Maunsell, J. H. R. & van Essen, D. C. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J. Neurosci. 3, 2436–2586 (1983).

    Article  Google Scholar 

  23. Born, R. T. & Tootell, R. B. H. Segregation of global and local motion processing in primate middle temporal visual area. Nature 357, 497–499 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Schiller, P. H. The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey. Vis. Neurosci. 10, 717–746 (1993).

    Article  CAS  Google Scholar 

  25. Marcar, V. L., Xiao, D. K., Raiguel, S. E., Maes, H. & Orban, G. A. Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey. J. Neurophysiol. 74, 1258–1270 (1995).

    Article  CAS  Google Scholar 

  26. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10, 1157–1169 (1993).

    Article  CAS  Google Scholar 

  27. Kwong, K. K. et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl Acad. Sci. USA 89, 5675–5679 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl Acad. Sci. USA 89, 5951–5955 (1992).

    Article  ADS  CAS  Google Scholar 

  29. DeYoe, E. A., Bandettini, P., Neitz, J., Miller, D. & Winans, P. Functional magnetic resonance imaging (fMRI) of the human brain. J. Neurosci. Meth. 54, 171–187 (1994).

    Article  CAS  Google Scholar 

  30. Dale, A. M. & Sereno, M. I. Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. J. Cogn. Neurosci. 5, 162–176 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Adelson, S. Brown, M. Livingstone and W. van Duffel for comments on earlier versions of this manuscript. S. Macknik kindly loaned us the eye-tracking device used in some experiments. We are grateful for the technical support of T. Campbell, T. Davis, M. Foley and M. Vevea, and to all of our subjects. J.B.R. was supported by an HHMI predoctoral fellowship, and R.B.H.T. by the Human Frontiers program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Reppas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reppas, J., Niyogi, S., Dale, A. et al. Representation of motion boundaries in retinotopic human visual cortical areas. Nature 388, 175–179 (1997). https://doi.org/10.1038/40633

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/40633

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing