Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Anxiety is associated with reduced central serotonin transporter availability in unmedicated patients with unipolar major depression: a [11C]DASB PET study

Abstract

Serotonergic dysfunction may contribute to negative mood states in affective disorders. Some in vivo imaging studies showed reduced availability of serotonin transporters (5-HTT) in the brainstem and thalamus of patients with major depression. We tested the hypothesis that 5-HTT availability is reduced in unmedicated unipolar patients with major depression compared to healthy control subjects matched for gender, age, genotype and smoking status. Availability of 5-HTT was measured in vivo with positron emission tomography and [11C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile (DASB) in the midbrain, thalamus and amygdala. DASB binding was correlated with the severity of depression (Beck's Depression Inventory), anxiety (Spielberger's State-Trait Anxiety Inventory) and personality traits (Temperament and Character Inventory). Patients with major depression displayed reduced 5-HTT availability in the thalamus (P=0.005). In patients, low serotonin transporter availability correlated with high anxiety (thalamus: r=−0.78, P=0.004; midbrain: r=−0.78, P=0.004; amygdala: r=−0.80, P=0.003). Correlations with severity of depression were weaker and did not survive correction for multiple testing. These results support the hypothesis that central serotonergic dysfunction is associated with negative mood states in affective disorders. In the thalamus, a low serotonin reuptake capacity may interfere with thalamic control of cortical excitability and contribute to anxiety rather than depression per se in major depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Meltzer H, Bastani B, Jayathilake K, Maes M . Fluoxetine, but not tricyclic antidepressants, potentiates the 5-hydroxytryptophan-mediated increase in plasma cortisol and prolactin secretion in subjects with major depression or with obsessive compulsive disorder. Neuropsychopharmacology 1997; 17: 1–11.

    Article  CAS  PubMed  Google Scholar 

  2. Meyer JH, Wilson AA, Sagrati S, Hussey D, Carella A, Potter WZ et al. Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry 2004; 161: 826–835.

    Article  PubMed  Google Scholar 

  3. Pirker W, Asenbaum S, Kasper S, Walter H, Angelberger P, Koch G et al. Beta-CIT SPECT demonstrates blockade of 5HT-uptake sites by citalopram in the human brain in vivo. J Neural Transm Gen Sect 1995; 100: 247–256.

    Article  CAS  PubMed  Google Scholar 

  4. Asberg M, Thoren P, Traskman L, Bertilsson L, Ringberger V . ‘Serotonin depression’—a biochemical subgroup within the affective disorders? Science 1976; 191: 478–480.

    Article  CAS  PubMed  Google Scholar 

  5. Asberg M, Bertilsson L, Martensson B, Scalia-Tomba GP, Thoren P, Traskman-Bendz L . CSF monoamine metabolites in melancholia. Acta Psychiatr Scand 1984; 69: 201–219.

    Article  CAS  PubMed  Google Scholar 

  6. Malison RT, Price LH, Berman R, van Dyck CH, Pelton GH, Carpenter L et al. Reduced brain serotonin transporter availability in major depression as measured by [123I]-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane and single photon emission computed tomography. Biol Psychiatry 1998; 44: 1090–1098.

    Article  CAS  PubMed  Google Scholar 

  7. Staley JK, Sanacora G, Tamagnan G, Maciejewski PK, Malison RT, Berman RM et al. Sex differences in diencephalon serotonin transporter availability in major depression. Biol Psychiatry 2006; 59: 40–47.

    Article  CAS  PubMed  Google Scholar 

  8. Willeit M, Praschak-Rieder N, Neumeister A, Pirker W, Asenbaum S, Vitouch O et al. [123I]-beta-CIT SPECT imaging shows reduced brain serotonin transporter availability in drug-free depressed patients with seasonal affective disorder. Biol Psychiatry 2000; 47: 482–489.

    Article  CAS  PubMed  Google Scholar 

  9. Laruelle M, Baldwin R, Malison R, Zea-Ponce Y, Zoghbi S, Al-Tikriti M et al. SPECT imaging of dopamine and serotonin transporters with [123I]β-CIT: pharmacological characterization of brain uptake in non-human primates. Synapse 1993; 13: 295–309.

    Article  CAS  PubMed  Google Scholar 

  10. Heinz A, Jones DW, Zajicek K, Gorey JG, Juckel G, Higley JD et al. Depletion and restoration of endogenous monoamines affects β-CIT binding to serotonin but not dopamine transporters in non-human primates. J Neural Transm 2004; 68 (Suppl): 29–38.

    CAS  Google Scholar 

  11. Heinz A, Higley JD, Gorey JG, Saunders RC, Jones DW, Hommer D et al. In vivo association between alcohol intoxication, aggression, and serotonin transporter availability in nonhuman primates. Am J Psychiatry 1998; 155: 1023–1028.

    Article  CAS  PubMed  Google Scholar 

  12. Heinz A, Jones DW, Ragan P, Hommer D, Knable MB, Weinberger DR et al. Relationship between cortisol and serotonin metabolites and transporters in alcoholism. Pharmacopsychiatry 2002; 35: 127–134.

    Article  CAS  PubMed  Google Scholar 

  13. Seibyl JP, Wallace E, Smith EO, Stabin M, Baldwin RM, Zoghbi S et al. Whole-body biodistribution, radiation absorbed dose and brain SPECT imaging with iodine-123-beta-CIT in healthy human subjects. J Nucl Med 1994; 35: 764–770.

    CAS  PubMed  Google Scholar 

  14. Rinne JO, Laihinen A, Nagren K, Ruottinen H, Ruotsalainen U, Rinne UK . PET examination of the monoamine transporter with [11C]beta-CIT and [11C]beta-CFT in early Parkinson's disease. Synapse 1995; 21: 97–103.

    Article  CAS  PubMed  Google Scholar 

  15. Pirker W, Asenbaum S, Hauk M, Kandlhofer S, Tauscher J, Willeit M et al. Imaging serotonin and dopamine transporters with 123I-beta-CIT SPECT: binding kinetics and effects of normal aging. J Nucl Med 2000; 41: 36–44.

    CAS  PubMed  Google Scholar 

  16. Hummerich R, Schulze O, Radler T, Mikecz P, Reimold M, Brenner W et al. Inhibition of serotonin transport by (+)McN5652 is noncompetitive. Nucl Med Biol 2006; 33: 317–323.

    Article  CAS  PubMed  Google Scholar 

  17. Parsey RV, Hastings RS, Oquendo MA, Huang YY, Simpson N, Arcement J et al. Lower serotonin transporter binding potential in the human brain during major depressive episodes. Am J Psychiatry 2006; 163: 52–58.

    Article  PubMed  Google Scholar 

  18. Ichimiya T, Suhara T, Sudo Y, Okubo Y, Nakayama K, Nankai M et al. Serotonin transporter binding in patients with mood disorders: a PET study with [11C](+)McN5652. Biol Psychiatry 2002; 51: 715–722.

    Article  CAS  PubMed  Google Scholar 

  19. Frankle WG, Huang Y, Hwang DR, Talbot PS, Slifstein M, Van Heertum R et al. Comparative evaluation of serotonin transporter radioligands 11C-DASB and 11C-McN 5652 in healthy humans. J Nucl Med 2004; 45: 682–694.

    CAS  PubMed  Google Scholar 

  20. Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA . Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med 2000; 27: 1719–1722.

    Article  CAS  PubMed  Google Scholar 

  21. Hummerich R, Reischl G, Ehrlichmann W, Machulla HJ, Heinz A, Schloss P . DASB—in vitro binding characteristics on human recombinant monoamine transporters with regard to its potential as a PET tracer. J Neurochem 2004; 90: 1218–1226.

    Article  CAS  PubMed  Google Scholar 

  22. Meyer JH, Houle S, Sagrati S, Carella A, Hussey DF, Ginovart N et al. Brain serotonin transporter binding potential measured with carbon 11-labeled DASB positron emission tomography: effects of major depressive episodes and severity of dysfunctional attitudes. Arch Gen Psychiatry 2004; 61: 1271–1279.

    Article  CAS  PubMed  Google Scholar 

  23. Meyer JH . Imaging the serotonin transporter during major depressive disorder and antidepressant treatment. J Psychiatry Neurosci 2007; 32: 86–102.

    PubMed  PubMed Central  Google Scholar 

  24. Staley JK, Krishnan-Sarin S, Zoghbi S, Tamagnan G, Fujita M, Seibyl JP et al. Sex differences in [123I]beta-CIT SPECT measures of dopamine and serotonin transporter availability in healthy smokers and nonsmokers. Synapse 2001; 41: 275–284.

    Article  CAS  PubMed  Google Scholar 

  25. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527–1531.

    Article  CAS  PubMed  Google Scholar 

  26. Heinz A, Jones DW, Mazzanti C, Goldman D, Ragan P, Hommer D et al. Serotonin transporter genotype interacts with in vivo protein expression and chronic alcohol intake. Biol Psychiatry 2000; 47: 643–649.

    Article  CAS  PubMed  Google Scholar 

  27. van Dyck CH, Malison RT, Staley JK, Jacobsen LK, Seibyl JP, Laruelle M et al. Central serotonin transporter availability measured with [123I]beta-CIT SPECT in relation to serotonin transporter genotype. Am J Psychiatry 2004; 161: 525–531.

    Article  PubMed  Google Scholar 

  28. Reimold M, Smolka MN, Schumann G, Zimmer A, Wrase J, Mann K et al. Midbrain serotonin transporter binding potential measured with [11C]DASB is affected by serotonin transporter genotype. J Neural Transm 2007; 114: 635–639.

    Article  CAS  PubMed  Google Scholar 

  29. Praschak-Rieder N, Kennedy J, Wilson AA, Hussey D, Boovariwala A, Willeit M et al. Novel 5-HTTLPR allele associates with higher serotonin transporter binding in putamen: a [11C]DASB positron emission tomography study. Biol Psychiatry 2007; 62: 327–331.

    Article  CAS  PubMed  Google Scholar 

  30. First MB, Spitzer RL, Gibbon M, Williams J . Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition With Psychotic Screen. Biometrics Research, New York State Psychiatric Institute: New York, 2001.

    Google Scholar 

  31. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J . An inventory for measuring depression. Arch Gen Psychiatry 1961; 4: 561–571.

    Article  CAS  PubMed  Google Scholar 

  32. Hautzinger M, Bailer M, Worall H, Keller F . Beck Depressionsinventar (BDI). Huber: Bern, 1994.

    Google Scholar 

  33. Laux LT, Glanzmann P, Schaffner P, Spielberger CD . Das State-Trait-Angstinventar (STAI). Beltz: Weinheim, 1981.

    Google Scholar 

  34. Cloninger CR, Przybeck TR, Svrakic DM, Wetzel RD . The Temperament and Character Inventory (TCI): A guide to its Development and Use. Center for Psychobiology of Personality: St Louis, MO, 1994.

    Google Scholar 

  35. First MB, Spitzer RL, Gibbon M, Williams J . Structured Clinical Interview for DSM-IV Personality Disorders (SCID-II). American Psychiatric Press: Washington, DC, 1997.

    Google Scholar 

  36. Solbach C, Reischl G, Machulla H-J . Determination of reaction parameters for the synthesis of the serotonin transporter ligand [11C]DASB and application in a remote-controlled high yield synthesis. Radiochim Acta 2004; 92: 341–344.

    Article  CAS  Google Scholar 

  37. Ichise M, Liow J-S, Lu J-Q, Takano A, Model K, Toyama H et al. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab 2003; 23: 1096–1112.

    Article  PubMed  Google Scholar 

  38. Parsey RV, Kent JM, Oquendo MA, Richards MC, Pratap M, Cooper TB et al. Acute occupancy of brain serotonin transporter by sertraline as measured by [11C]DASB and positron emission tomography. Biol Psychiatry 2006; 59: 821–828.

    Article  CAS  PubMed  Google Scholar 

  39. Reimold M, Slifstein M, Heinz A, Müller-Schauenburg W, Bares R . Effect of spatial smoothing on t-maps: arguments for going back from t-maps to masked contrast images. J Cereb Blood Flow Metab 2006; 26: 751–759.

    Article  PubMed  Google Scholar 

  40. McCormick DA . Neurotransmitter actions in the thalamus and cerebral cortex. J Clin Neurophysiol 1992; 9: 212–223.

    Article  CAS  PubMed  Google Scholar 

  41. Meyer JH, Wilson AA, Ginovart N, Goulding V, Hussey D, Hood K et al. Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [11C]DASB PET imaging study. Am J Psychiatry 2001; 158: 1843–1849.

    Article  CAS  PubMed  Google Scholar 

  42. Meyer JH, Kapur S, Eisfeld B, Brown GM, Houle S, DaSilva J et al. The effect of paroxetine on 5-HT(2A) receptors in depression: an [18F]setoperone PET imaging study. Am J Psychiatry 2001; 158: 78–85.

    Article  CAS  PubMed  Google Scholar 

  43. Benmansour S, Owens WA, Cecchi M, Morilak DA, Frazer A . Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter. J Neurosci 2002; 22: 6766–6772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 2002; 297: 400–403.

    Article  CAS  PubMed  Google Scholar 

  45. Hariri AR, Drabant EM, Munoz KE, Kolachana BS, Mattay VS, Egan MF et al. A susceptibility gene for affective disorders and the response of the human amygdala. Arch Gen Psychiatry 2005; 62: 146–152.

    Article  CAS  PubMed  Google Scholar 

  46. Heinz A, Braus DF, Smolka MN, Wrase J, Puls I, Hermann D et al. Amygdala–prefrontal coupling depends on a genetic variation of the serotonin transporter. Nat Neurosci 2005; 8: 20–21.

    Article  CAS  PubMed  Google Scholar 

  47. Hansen HH, Sanchez C, Meier E . Neonatal administration of the selective serotonin reuptake inhibitor Lu 10-134-C increases forced swimming-induced immobility in adult rats: a putative animal model of depression? J Pharmacol Exp Ther 1997; 283: 1333–1341.

    CAS  PubMed  Google Scholar 

  48. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS et al. 5-HTTLPR polymorphism impacts human cingulate–amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 2005; 8: 828–834.

    Article  CAS  PubMed  Google Scholar 

  49. Hasler G, Drevets WC, Manji HK, Charney DS . Discovering endophenotypes for major depression. Neuropsychopharmacology 2004; 29: 1765–1781.

    Article  CAS  PubMed  Google Scholar 

  50. Knutson B, Wolkowitz OM, Cole SW, Chan T, Moore EA, Johnson RC et al. Selective alteration of personality and social behavior by serotonergic intervention. Am J Psychiatry 1998; 155: 373–379.

    Article  CAS  PubMed  Google Scholar 

  51. Spillmann MK, Van der Does AJ, Rankin MA, Vuolo RD, Alpert JE, Nierenberg AA et al. Tryptophan depletion in SSRI-recovered depressed outpatients. Psychopharmacology 2001; 155: 123–127.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Hanna Smoltczyk and Dr Patrick Kaspar for their engaged collaboration during this study. The study was supported by the Deutsche Forschungsgemeinschaft (He 2597/7-2 and 7-3, Ba 1026/6-2, Re 1472/6-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Heinz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reimold, M., Batra, A., Knobel, A. et al. Anxiety is associated with reduced central serotonin transporter availability in unmedicated patients with unipolar major depression: a [11C]DASB PET study. Mol Psychiatry 13, 606–613 (2008). https://doi.org/10.1038/sj.mp.4002149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002149

Keywords

This article is cited by

Search

Quick links