Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions

Abstract

Despite accumulating evidence pointing to a genetic basis for tardive dyskinesia, results to date have been inconsistent owing to limited statistical power and limitations in molecular genetic methodology. A Medline, EMBASE and PsychINFO search for literature published between 1976 and June 2007 was performed, yielding 20 studies from which data were extracted for calculation of pooled estimates using meta-analytic techniques. Evidence from pooled data for genetic association with tardive dyskinesia (TD) showed (1) in COMTval158met, using Val–Val homozygotes as reference category, a protective effect for Val–Met heterozygotes (OR=0.63, 95% CI: 0.46–0.86, P=0.004) and Met carriers (OR=0.66, 95% CI: 0.49–0.88, P=0.005); (2) in Taq1A in DRD2, using the A1 variant as reference category, a risk-increasing effect for the A2 variant (OR=1.30, 95% CI: 1.03–1.65, P=0.026), and A2–A2 homozygotes using A1–A1 as reference category (OR=1.80, 95% CI: 1.03–3.15, P=0.037); (3) in MnSOD Ala–9Val, using Ala–Ala homozygotes as reference category, a protective effect for Ala–Val (OR=0.37, 95% CI: 0.17–0.79, P=0.009) and for Val carriers (OR=0.49, 95% CI: 0.24–1.00, P=0.047). These analyses suggest multiple genetic influences on TD, indicative of pharmacogenetic interactions. Although associations are small, the effects underlying them may be subject to interactions with other loci that, when identified, may have acceptable predictive power. Future genetic research will take advantage of new genomic knowledge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sachdev PS . Neuroleptic-induced movement disorders: an overview. Psychiatr Clin North Am 2005; 28: 255–274, x.

    Article  PubMed  Google Scholar 

  2. Muller DJ, Shinkai T, De Luca V, Kennedy JL . Clinical implications of pharmacogenomics for tardive dyskinesia. Pharmacogenomics J 2004; 4: 77–87.

    Article  CAS  PubMed  Google Scholar 

  3. Marsalek M . Tardive drug-induced extrapyramidal syndromes. Pharmacopsychiatry 2000; 33 (Suppl 1): 14–33.

    Article  CAS  PubMed  Google Scholar 

  4. Abdolmaleky HM, Thiagalingam S, Wilcox M . Genetics and epigenetics in major psychiatric disorders: dilemmas, achievements, applications, and future scope. Am J Pharmacogenomics 2005; 5: 149–160.

    Article  CAS  PubMed  Google Scholar 

  5. Egger M, Smith GD, Phillips AN . Meta-analysis: principles and procedures. BMJ 1997; 315: 1533–1537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Egger M, Smith GD . Meta-analysis. Potentials and promise. BMJ 1997; 315: 1371–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bakker PR, van Harten PN, van Os J . Antipsychotic-induced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta analysis. Schizophr Res 2006; 83: 185–192.

    Article  PubMed  Google Scholar 

  8. van Os J, Fahy T, Jones P, Harvey I, Toone B, Murray R . Tardive dyskinesia: who is at risk? Acta Psychiatr Scand 1997; 96: 206–216.

    Article  CAS  PubMed  Google Scholar 

  9. Ellingrod VL, Schultz SK, Arndt S . Abnormal movements and tardive dyskinesia in smokers and nonsmokers with schizophrenia genotyped for cytochrome P450 2D6. Pharmacotherapy 2002; 22: 1416–1419.

    Article  PubMed  Google Scholar 

  10. Patsopoulos NA, Ntzani EE, Zintzaras E, Ioannidis JP . CYP2D6 polymorphisms and the risk of tardive dyskinesia in schizophrenia: a meta-analysis. Pharmacogenet Genomics 2005; 15: 151–158.

    Article  CAS  PubMed  Google Scholar 

  11. Tiwari AK, Deshpande SN, Rao AR, Bhatia T, Lerer B, Nimgaonkar VL et al. Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: III. Lack of association of CYP3A4 and CYP2D6 gene polymorphisms. Schizophr Res 2005; 75: 21–26.

    Article  PubMed  Google Scholar 

  12. Tiwari AK, Deshpande SN, Rao AR, Bhatia T, Mukit SR, Shriharsh V et al. Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: I. Association of CYP1A2 gene polymorphism. Pharmacogenomics J 2005; 5: 60–69.

    Article  CAS  PubMed  Google Scholar 

  13. Ozdemir V, Aklillu E, Mee S, Bertilsson L, Albers LJ, Graham JE et al. Pharmacogenetics for off-patent antipsychotics: reframing the risk for tardive dyskinesia and access to essential medicines. Expert Opin Pharmacother 2006; 7: 119–133.

    Article  CAS  PubMed  Google Scholar 

  14. Tsai G, Goff DC, Chang RW, Flood J, Baer L, Coyle JT . Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry 1998; 155: 1207–1213.

    Article  CAS  PubMed  Google Scholar 

  15. Collier DA, Li T . The genetics of schizophrenia: glutamate not dopamine? Eur J Pharmacol 2003; 480: 177–184.

    Article  CAS  PubMed  Google Scholar 

  16. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68.

    Article  CAS  PubMed  Google Scholar 

  17. Jann MW . Implications for atypical antipsychotics in the treatment of schizophrenia: neurocognition effects and a neuroprotective hypothesis. Pharmacotherapy 2004; 24: 1759–1783.

    Article  CAS  PubMed  Google Scholar 

  18. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002; 71: 1296–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bray NJ, Buckland PR, Williams NM, Williams HJ, Norton N, Owen MJ et al. A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am J Hum Genet 2003; 73: 152–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Handoko HY, Nyholt DR, Hayward NK, Nertney DA, Hannah DE, Windus LC et al. Separate and interacting effects within the Catechol-O-Methyltransferase (COMT) are associated with schizophrenia. Mol Psychiatry 2005; 10: 589–597.

    Article  CAS  PubMed  Google Scholar 

  21. Palmatier MA, Pakstis AJ, Speed W, Paschou P, Goldman D, Odunsi A et al. COMT haplotypes suggest P2 promoter region relevance for schizophrenia. Mol Psychiatry 2004; 9: 859–870.

    Article  CAS  PubMed  Google Scholar 

  22. Williams HJ, Owen MJ, O'Donovan MC . Is COMT a susceptibility gene for schizophrenia? Schizophr Bull 2007; 33: 635–641.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Elkashef AM, Wyatt RJ . Tardive dyskinesia: possible involvement of free radicals and treatment with vitamin E. Schizophr Bull 1999; 25: 731–740.

    Article  CAS  PubMed  Google Scholar 

  24. Lerer B . Pharmacogenetics of Psychotropic Drugs. Cambridge University Press: Cambridge, 2002 pp x, 446.

    Book  Google Scholar 

  25. Accili D, Fishburn CS, Drago J, Steiner H, Lachowicz JE, Park BH et al. A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc Natl Acad Sci USA 1996; 93: 1945–1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suzuki M, Hurd YL, Sokoloff P, Schwartz JC, Sedvall G . D3 dopamine receptor MRNA is widely expressed in the human brain. Brain Res 1998; 779: 58–74.

    Article  CAS  PubMed  Google Scholar 

  27. Zai CC, Hwang RW, De Luca V, Muller DJ, King N, Zai GC et al. Association study of tardive dyskinesia and twelve DRD2 polymorphisms in schizophrenia patients. Int J Neuropsychopharmacol 2007; 10: 639–651.

    Article  CAS  PubMed  Google Scholar 

  28. Neville MJ, Johnstone EC, Walton RT . Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat 2004; 23: 540–545.

    Article  CAS  PubMed  Google Scholar 

  29. Noble EP, Blum K, Ritchie T, Montgomery A, Sheridan PJ . Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch Gen Psychiatry 1991; 48: 648–654.

    Article  CAS  PubMed  Google Scholar 

  30. Thompson J, Thomas N, Singleton A, Piggott M, Lloyd S, Perry EK et al. D2 dopamine receptor gene (DRD2) Taq1 a polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics 1997; 7: 479–484.

    Article  CAS  PubMed  Google Scholar 

  31. Laruelle M, Gelernter J, Innis RB . D2 receptors binding potential is not affected by Taq1 polymorphism at the D2 receptor gene. Mol Psychiatry 1998; 3: 261–265.

    Article  CAS  PubMed  Google Scholar 

  32. Pohjalainen T, Rinne JO, Nagren K, Lehikoinen P, Anttila K, Syvalahti EK et al. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry 1998; 3: 256–260.

    Article  CAS  PubMed  Google Scholar 

  33. Jonsson EG, Nothen MM, Grunhage F, Farde L, Nakashima Y, Propping P et al. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry 1999; 4: 290–296.

    Article  CAS  PubMed  Google Scholar 

  34. Silvestri S, Seeman MV, Negrete JC, Houle S, Shammi CM, Remington GJ et al. Increased dopamine D2 receptor binding after long-term treatment with antipsychotics in humans: a clinical PET study. Psychopharmacology (Berl) 2000; 152: 174–180.

    Article  CAS  Google Scholar 

  35. Noble EP . D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. Am J Med Genet B Neuropsychiatr Genet 2003; 116: 103–125.

    Article  Google Scholar 

  36. Young RM, Lawford BR, Nutting A, Noble EP . Advances in molecular enetics and the prevention and treatment of substance misuse: implications of association studies of the A1 allele of the D2 dopamine receptor gene. Addict Behav 2004; 29: 1275–1294.

    Article  PubMed  Google Scholar 

  37. Cravchik A, Sibley DR, Gejman PV . Functional analysis of the human D2 dopamine receptor missense variants. J Biol Chem 1996; 271: 26013–26017.

    Article  CAS  PubMed  Google Scholar 

  38. Arinami T, Gao M, Hamaguchi H, Toru M . A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum Mol Genet 1997; 6: 577–582.

    Article  CAS  PubMed  Google Scholar 

  39. Ritchie T, Noble EP . Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochem Res 2003; 28: 73–82.

    Article  CAS  PubMed  Google Scholar 

  40. MacLeod SL, Tang YM, Yokoi T, Kamataki T, Doublin S, Lawson B . The role of a recently discovered genetic polymorphism in the regulation of the human CYP1A2 gene. Proc Am Assoc Cancer Res 1998; 39: 396.

    Google Scholar 

  41. Sachse C, Brockmoller J, Bauer S, Roots I . Functional significance of a C → A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 1999; 47: 445–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Basile VS, Ozdemir V, Masellis M, Walker ML, Meltzer HY, Lieberman JA et al. A functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene: association with tardive dyskinesia in schizophrenia. Mol Psychiatry 2000; 5: 410–417.

    Article  CAS  PubMed  Google Scholar 

  43. Chong SA, Tan EC, Tan CH, Mythily . Smoking and tardive dyskinesia: lack of involvement of the CYP1A2 gene. J Psychiatry Neurosci 2003; 28: 185–189.

    PubMed  PubMed Central  Google Scholar 

  44. Fu Y, Fan CH, Deng HH, Hu SH, Lv DP, Li LH et al. Association of CYP2D6 and CYP1A2 gene polymorphism with tardive dyskinesia in Chinese schizophrenic patients. Acta Pharmacol Sin 2006; 27: 328–332.

    Article  CAS  PubMed  Google Scholar 

  45. Matsumoto C, Ohmori O, Shinkai T, Hori H, Nakamura J . Genetic association analysis of functional polymorphisms in the cytochrome P450 1A2 (CYP1A2) gene with tardive dyskinesia in Japanese patients with schizophrenia. Psychiatr Genet 2004; 14: 209–213.

    Article  PubMed  Google Scholar 

  46. Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T . Genetic polymorphism in the 5′-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem (Tokyo) 1999; 125: 803–808.

    Article  CAS  Google Scholar 

  47. Hitzeroth A, Niehaus DJ, Koen L, Botes WC, Deleuze JF, Warnich L . Association between the MnSOD Ala-9Val polymorphism and development of schizophrenia and abnormal involuntary movements in the Xhosa population. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 664–672.

    Article  CAS  PubMed  Google Scholar 

  48. Rosenblum JS, Gilula NB, Lerner RA . On signal sequence polymorphisms and diseases of distribution. Proc Natl Acad Sci USA 1996; 93: 4471–4473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizuno Y . Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson's disease. Biochem Biophys Res Commun 1996; 226: 561–565.

    Article  CAS  PubMed  Google Scholar 

  50. Sutton A, Khoury H, Prip-Buus C, Cepanec C, Pessayre D, Degoul F . The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics 2003; 13: 145–157.

    Article  CAS  PubMed  Google Scholar 

  51. Sutton A, Imbert A, Igoudjil A, Descatoire V, Cazanave S, Pessayre D et al. The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability. Pharmacogenet Genomics 2005; 15: 311–319.

    Article  CAS  PubMed  Google Scholar 

  52. Herken H, Erdal ME, Boke O, Savas HA . Tardive dyskinesia is not associated with the polymorphisms of 5-HT2A receptor gene, serotonin transporter gene and catechol-O-methyltransferase gene. Eur Psychiatry 2003; 18: 77–81.

    Article  PubMed  Google Scholar 

  53. Lai IC, Wang YC, Lin CC, Bai YM, Liao DL, Yu SC et al. Negative association between catechol-O-methyltransferase (COMT) gene Val158Met polymorphism and persistent tardive dyskinesia in schizophrenia. J Neural Transm 2005; 112: 1107–1113.

    Article  CAS  PubMed  Google Scholar 

  54. Matsumoto C, Shinkai T, Hori H, Ohmori O, Nakamura J . Polymorphisms of dopamine degradation enzyme (COMT and MAO) genes and tardive dyskinesia in patients with schizophrenia. Psychiatry Res 2004; 127: 1–7.

    Article  CAS  PubMed  Google Scholar 

  55. Han DH, Lee JH, Lee YS, Kee BS, Min KJ, Na C . The association between tardive dyskinesia induced by haloperidol and polymorphisms in the serotonin transporter gene and catecholamine-O-methyltransferase gene in Korean schizophrenic patients. Clin Psychopharmacol Neurosci 2005; 3: 16–21.

    CAS  Google Scholar 

  56. Srivastava V, Varma PG, Prasad S, Semwal P, Nimgaonkar VL, Lerer B et al. Genetic susceptibility to tardive dyskinesia among schizophrenia subjects: IV. Role of dopaminergic pathway gene polymorphisms. Pharmacogenet Genomics 2006; 16: 111–117.

    Article  CAS  PubMed  Google Scholar 

  57. Basile VS, Masellis M, Potkin SG, Kennedy JL . Pharmacogenomics in schizophrenia: the quest for individualized therapy. Hum Mol Genet 2002; 11: 2517–2530.

    Article  CAS  PubMed  Google Scholar 

  58. Chong SA, Tan EC, Tan CH, Mythily, Chan YH . Polymorphisms of dopamine receptors and tardive dyskinesia among Chinese patients with schizophrenia. Am J Med Genet 2003; 116B: 51–54.

    Article  PubMed  Google Scholar 

  59. de Leon J, Susce MT, Pan RM, Koch WH, Wedlund PJ . Polymorphic variations in GSTM1, GSTT1, PgP, CYP2D6, CYP3A5, and dopamine D2 and D3 receptors and their association with tardive dyskinesia in severe mental illness. J Clin Psychopharmacol 2005; 25: 448–456.

    Article  CAS  PubMed  Google Scholar 

  60. Lattuada E, Cavallaro R, Serretti A, Lorenzi C, Smeraldi E . Tardive dyskinesia and DRD2, DRD3, DRD4, 5-HT2A variants in schizophrenia: an association study with repeated assessment. Int J Neuropsychopharmacol 2004; 7: 489–493.

    Article  CAS  PubMed  Google Scholar 

  61. Kaiser R, Tremblay PB, Klufmoller F, Roots I, Brockmoller J . Relationship between adverse effects of antipsychotic treatment and dopamine D(2) receptor polymorphisms in patients with schizophrenia. Mol Psychiatry 2002; 7: 695–705.

    Article  CAS  PubMed  Google Scholar 

  62. Chen CH, Wei FC, Koong FJ, Hsiao KJ . Association of TaqI A polymorphism of dopamine D2 receptor gene and tardive dyskinesia in schizophrenia. Biol Psychiatry 1997; 41: 827–829.

    Article  CAS  PubMed  Google Scholar 

  63. Nakazono Y, Abe H, Murakami H, Koyabu N, Isaka Y, Nemoto Y et al. Association between neuroleptic drug-induced extrapyramidal symptoms and dopamine D2-receptor polymorphisms in Japanese schizophrenic patients. Int J Clin Pharmacol Ther 2005; 43: 163–171.

    Article  CAS  PubMed  Google Scholar 

  64. Guzey C, Scordo MG, Spina E, Landsem VM, Spigset O . Antipsychotic-induced extrapyramidal symptoms in patients with schizophrenia: associations with dopamine and serotonin receptor and transporter polymorphisms. Eur J Clin Pharmacol 2007; 63: 233–241.

    Article  PubMed  CAS  Google Scholar 

  65. Xu XF, Zhang XB, Sha WW, Zhou CY . Association of the gene polymorphism of dopamine and serotonin 2A receptors with tardive dyskinesia in chronic schizophrenia. Zhongguo Linchuang Kangfu 2006; 10: 106–108.

    CAS  Google Scholar 

  66. Liou YJ, Lai IC, Liao DL, Chen JY, Lin CC, Lin CY et al. The human dopamine receptor D2 (DRD2) gene is associated with tardive dyskinesia in patients with schizophrenia. Schizophr Res 2006; 86: 323–325.

    Article  PubMed  Google Scholar 

  67. Hori H, Ohmori O, Shinkai T, Kojima H, Nakamura J . Association between three functional polymorphisms of dopamine D2 receptor gene and tardive dyskinesia in schizophrenia. Am J Med Genet 2001; 105: 774–778.

    Article  CAS  PubMed  Google Scholar 

  68. Segman RH, Goltser T, Heresco-Levy U, Finkel B, Shalem R, Schlafman M et al. Association of dopaminergic and serotonergic genes with tardive dyskinesia in patients with chronic schizophrenia. Pharmacogenomics J 2003; 3: 277–283.

    Article  CAS  PubMed  Google Scholar 

  69. Dolzan V, Plesnicar BK, Serretti A, Mandelli L, Zalar B, Koprivsek J et al. Polymorphisms in dopamine receptor DRD1 and DRD2 genes and psychopathological and extrapyramidal symptoms in patients on long-term antipsychotic treatment. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 809–815.

    Article  CAS  Google Scholar 

  70. Schulze TG, Schumacher J, Muller DJ, Krauss H, Alfter D, Maroldt A et al. Lack of association between a functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene and tardive dyskinesia in schizophrenia. Am J Med Genet 2001; 105: 498–501.

    Article  CAS  PubMed  Google Scholar 

  71. Tsapakis EM, Meagher D, Quinn J, Waddington JL, Gill M, Kerwin RW et al. An association study of the CYP1A2− 164A polymorphism and tardive dyskinesia. 2002. (Poster).

  72. Shen H, He MM, Liu H, Wrighton SA, Wang L, Guo B et al. Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab Dispos 2007; 35: 1292–1300.

    Article  CAS  PubMed  Google Scholar 

  73. Hori H, Ohmori O, Shinkai T, Kojima H, Okano C, Suzuki T et al. Manganese superoxide dismutase gene polymorphism and schizophrenia: relation to tardive dyskinesia. Neuropsychopharmacology 2000; 23: 170–177.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang Z, Zhang X, Hou G, Sha W, Reynolds GP . The increased activity of plasma manganese superoxide dismutase in tardive dyskinesia is unrelated to the Ala-9Val polymorphism. J Psychiatr Res 2002; 36: 317–324.

    Article  PubMed  Google Scholar 

  75. Pae CU . Comments on ‘Association between Ala-9Val polymorphism of MnSOD gene and schizophrenia’ by O. Akyol et al. Progress in neuropsychopharmacology and biological psychiatry 29, 2005, 123–131. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 762–763.

    Article  CAS  PubMed  Google Scholar 

  76. Akyol O, Yanik M, Elyas H, Namli M, Canatan H, Akin H et al. Association between Ala-9Val polymorphism of Mn-SOD gene and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 123–131.

    Article  CAS  PubMed  Google Scholar 

  77. Galecki P, Pietras T, Szemraj J . Manganese superoxide dismutase gene (MnSOD) polimorphism in schizophrenics with tardive dyskinesia from central Poland. Psychiatr Pol 2006; 40: 937–948.

    PubMed  Google Scholar 

  78. Arranz MJ, de Leon J . Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 2007; 12: 707–747.

    Article  CAS  PubMed  Google Scholar 

  79. Thomas DC . Statistical Methods in Genetic Epidemiology. Oxford University Press: New York, 2004.

    Google Scholar 

  80. Coyle JT . Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 2006; 26: 365–384.

    CAS  PubMed  Google Scholar 

  81. Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT . Neurobiology of schizophrenia. Neuron 2006; 52: 139–153.

    CAS  PubMed  Google Scholar 

  82. Lerer B, Segman RH, Tan EC, Basile VS, Cavallaro R, Aschauer HN et al. Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype. Int J Neuropsychopharmacol 2005; 8: 411–425.

    Article  CAS  PubMed  Google Scholar 

  83. Lerer B, Segman RH, Fangerau H, Daly AK, Basile VS, Cavallaro R et al. Pharmacogenetics of tardive dyskinesia: combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology 2002; 27: 105–119.

    Article  CAS  PubMed  Google Scholar 

  84. Correll CU, Leucht S, Kane JM . Lower risk for tardive dyskinesia associated with second-generation antipsychotics: a systematic review of 1-year studies. Am J Psychiatry 2004; 161: 414–425.

    Article  PubMed  Google Scholar 

  85. Jones PB, Barnes TR, Davies L, Dunn G, Lloyd H, Hayhurst KP et al. Randomized controlled trial of the effect on quality of life of second- vs first-generation antipsychotic drugs in schizophrenia: cost utility of the latest antipsychotic drugs in schizophrenia study (CUtLASS 1). Arch Gen Psychiatry 2006; 63: 1079–1087.

    Article  CAS  PubMed  Google Scholar 

  86. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005; 353: 1209–1223.

    Article  CAS  PubMed  Google Scholar 

  87. Tenback DE, van Harten PN, Slooff CJ, Belger MA, van OJ . Effects of antipsychotic treatment on tardive dyskinesia: a 6-month evaluation of patients from the European Schizophrenia Outpatient Health Outcomes (SOHO) study. J Clin Psychiatry 2005; 66: 1130–1133.

    Article  PubMed  Google Scholar 

  88. Procyshyn RM, Kennedy NB, Tse G, Thompson B . Antipsychotic polypharmacy: a survey of discharge prescriptions from a tertiary care psychiatric institution. Can J Psychiatry 2001; 46: 334–339.

    Article  CAS  PubMed  Google Scholar 

  89. Broekema WJ, de Groot I, van Harten PN . Simultaneous Prescribing of Atypical Antipsychotics, Conventional Antipsychotics and Anticholinergics-a European Study. Pharm World Sci 2007; 29: 126–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Malhotra AK, Murphy Jr GM, Kennedy JL . Pharmacogenetics of psychotropic drug response. Am J Psychiatry 2004; 161: 780–796.

    Article  PubMed  Google Scholar 

  91. Insel TR, Lehner T . A new era in psychiatric genetics? Biol Psychiatry 2007; 61: 1017–1018.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ozdemir V, Williams-Jones B, Glatt SJ, Tsuang MT, Lohr JB, Reist C . Shifting emphasis from pharmacogenomics to theragnostics. Nat Biotechnol 2006; 24: 942–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ioannidis JP, Gwinn M, Little J, Higgins JP, Bernstein JL, Boffetta P et al. A road map for efficient and reliable human genome epidemiology. Nat Genet 2006; 38: 3–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from the Foundation ‘the Open Ankh’, the Netherlands. We thank Hitzevorth et al. for providing the TD data. We also thank Erik de Groot, MSc, for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P R Bakker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakker, P., van Harten, P. & van Os, J. Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions. Mol Psychiatry 13, 544–556 (2008). https://doi.org/10.1038/sj.mp.4002142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002142

Keywords

This article is cited by

Search

Quick links