Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dense SNP association study for bipolar I disorder on chromosome 18p11 suggests two loci with excess paternal transmission

Abstract

Parent-of-origin effects have been implicated as mediators of genetic susceptibility for a number of complex disease phenotypes, including bipolar disorder. Specifically, evidence for linkage on chromosome 18 is modified when allelic parent-of-origin is accommodated in the analysis. Our goal was to characterize the susceptibility locus for bipolar I disorder on chromosome 18p11 and investigate this parent-of-origin hypothesis in an association context. This was achieved by genotyping single nucleotide polymorphisms (SNPs) at a high density (1 SNP/5 kb) along 13.6 megabases of the linkage region. To increase our ability to detect a susceptibility locus, we restricted the phenotype definition to include only bipolar I probands. We also restricted our study population to Ashkenazi Jewish individuals; this population has characteristics of a genetic isolate and may therefore facilitate detection of variants for complex disease. Three hundred and forty-four pedigrees (363 parent/child trios) where probands were affected with bipolar 1 disorder were genotyped. Transmission disequilibrium test analysis revealed no statistically significant association to SNPs or haplotypes within this region in this sample. However, when parent-of-origin of transmitted SNPs was taken into account, suggestive association was revealed for two separate loci.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kleinman L, Lowin A, Flood E, Gandhi G, Edgell E, Revicki D . Costs of bipolar disorder. Pharmacoeconomics 2003; 21: 601–622.

    Article  Google Scholar 

  2. McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A . The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry 2003; 60: 497–502.

    Article  Google Scholar 

  3. Kieseppa T, Partonen T, Haukka J, Kaprio J, Lonnqvist J . High concordance of bipolar I disorder in a nationwide sample of twins. Am J Psychiatry 2004; 161: 1814–1821.

    Article  Google Scholar 

  4. Berrettini WH, Ferraro TN, Goldin LR, Weeks DE, Detera-Wadleigh S, Nurnberger Jr JI et al. Chromosome 18 DNA markers and manic-depressive illness: evidence for a susceptibility gene. Proc Natl Acad Sci USA 1994; 91: 5918–5921.

    Article  CAS  Google Scholar 

  5. Stine OC, Xu J, Koskela R, McMahon FJ, Gschwend M, Friddle C et al. Evidence for linkage of bipolar disorder to chromosome 18 with a parent-of-origin effect. Am J Hum Genet 1995; 57: 1384–1394.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin JP, Bale SJ . Parental transmission and D18S37 allele sharing in bipolar affective disorder. Genet Epidemiol 1997; 14: 665–668.

    Article  CAS  Google Scholar 

  7. Detera-Wadleigh SD, Badner JA, Berrettini WH, Yoshikawa T, Goldin LR, Turner G et al. A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2. Proc Natl Acad Sci USA 1999; 96: 5604–5609.

    Article  CAS  Google Scholar 

  8. Bennett P, Segurado R, Jones I, Bort S, McCandless F, Lambert D et al. The Wellcome trust UK–Irish bipolar affective disorder sibling-pair genome screen: first stage report. Mol Psychiatry 2002; 7: 189–200.

    Article  CAS  Google Scholar 

  9. Fallin MD, Lasseter VK, Wolyniec PS, McGrath JA, Nestadt G, Valle D et al. Genomewide linkage scan for bipolar-disorder susceptibility loci among Ashkenazi Jewish families. Am J Hum Genet 2004; 75: 204–219.

    Article  CAS  Google Scholar 

  10. Segurado R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger Jr JI et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: bipolar disorder. Am J Hum Genet 2003; 73: 49–62.

    Article  CAS  Google Scholar 

  11. Badner JA, Gershon ES . Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405–411.

    Article  CAS  Google Scholar 

  12. Nothen MM, Cichon S, Rohleder H, Hemmer S, Franzek E, Fritze J et al. Evaluation of linkage of bipolar affective disorder to chromosome 18 in a sample of 57 German families. Mol Psychiatry 1999; 4: 76–84.

    Article  CAS  Google Scholar 

  13. Tsiouris SJ, Breschel TS, Xu J, McInnis MG, McMahon FJ . Linkage disequilibrium analysis of G-olf alpha (GNAL) in bipolar affective disorder. Am J Med Genet 1996; 67: 491–494.

    Article  CAS  Google Scholar 

  14. Yoshikawa T, Padigaru M, Karkera JD, Sharma M, Berrettini WH, Esterling LE et al. Genomic structure and novel variants of myo-inositol monophosphatase 2 (IMPA2). Mol Psychiatry 2000; 5: 165–171.

    Article  CAS  Google Scholar 

  15. Ishiguro H, Ohtsuki T, Okubo Y, Kurumaji A, Arinami T . Association analysis of the pituitary adenyl cyclase activating peptide gene (PACAP) on chromosome 18p11 with schizophrenia and bipolar disorders. J Neural Transm 2001; 108: 849–854.

    Article  CAS  Google Scholar 

  16. McInnes LA, Service SK, Reus VI, Barnes G, Charlat O, Jawahar S et al. Fine-scale mapping of a locus for severe bipolar mood disorder on chromosome 18p11.3 in the Costa Rican population. Proc Natl Acad Sci USA 2001; 98: 11485–11490.

    Article  CAS  Google Scholar 

  17. Washizuka S, Kakiuchi C, Mori K, Kunugi H, Tajima O, Akiyama T et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2003; 120: 72–78.

    Article  Google Scholar 

  18. Sjoholt G, Ebstein RP, Lie RT, Berle JO, Mallet J, Deleuze JF et al. Examination of IMPA1 and IMPA2 genes in manic-depressive patients: association between IMPA2 promoter polymorphisms and bipolar disorder. Mol Psychiatry 2004; 9: 621–629.

    Article  CAS  Google Scholar 

  19. Washizuka S, Iwamoto K, Kazuno AA, Kakiuchi C, Mori K, Kametani M et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder in Japanese and the National Institute of Mental Health pedigrees. Biol Psychiatry 2004; 56: 483–489.

    Article  CAS  Google Scholar 

  20. Lohoff FW, Berrettini WH . Lack of association between variations in the melanocortin 5 receptor gene and bipolar disorder. Psychiatr Genet 2005; 15: 255–258.

    Article  Google Scholar 

  21. Weller AE, Dahl JP, Lohoff FW, Ferraro TN, Berrettini WH . Analysis of variations in the NAPG gene on chromosome 18p11 in bipolar disorder. Psychiatr Genet 2006; 16: 3–8.

    Article  Google Scholar 

  22. Puffenberger EG, Hosoda K, Washington SS, Nakao K, deWit D, Yanagisawa M et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease. Cell 1994; 79: 1257–1266.

    Article  CAS  Google Scholar 

  23. Puffenberger EG, Kauffman ER, Bolk S, Matise TC, Washington SS, Angrist M et al. Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Hum Mol Genet 1994; 3: 1217–1225.

    Article  CAS  Google Scholar 

  24. Chakravarti A . Endothelin receptor-mediated signaling in hirschsprung disease. Hum Mol Genet 1996; 5: 303–307.

    CAS  PubMed  Google Scholar 

  25. Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA et al. A common variant associated with prostate cancer in European and African populations. Nat Genet 2006; 38: 652–658.

    Article  CAS  Google Scholar 

  26. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006; 38: 320–323.

    Article  CAS  Google Scholar 

  27. Struewing JP, Hartge P, Wacholder S, Baker SM, Berlin M, McAdams M et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 1997; 336: 1401–1408.

    Article  CAS  Google Scholar 

  28. Neuhausen SL, Godwin AK, Gershoni-Baruch R, Schubert E, Garber J, Stoppa-Lyonnet D et al. Haplotype and phenotype analysis of nine recurrent BRCA2 mutations in 111 families: results of an international study. Am J Hum Genet 1998; 62: 1381–1388.

    Article  CAS  Google Scholar 

  29. Foulkes WD, Thiffault I, Gruber SB, Horwitz M, Hamel N, Lee C et al. The founder mutation MSH2*1906G–>C is an important cause of hereditary nonpolyposis colorectal cancer in the Ashkenazi Jewish population. Am J Hum Genet 2002; 71: 1395–1412.

    Article  CAS  Google Scholar 

  30. Lynch HT, Coronel SM, Okimoto R, Hampel H, Sweet K, Lynch JF et al. A founder mutation of the MSH2 gene and hereditary nonpolyposis colorectal cancer in the United States. JAMA 2004; 291: 718–724.

    Article  CAS  Google Scholar 

  31. Gauderman WJ, Morrison JM . QUANTO 1.1: a computer program for power and sample size calculations for genetic-epidemiology studies, http://hydra.usc.edu/gxe, 2006.

  32. Gauderman WJ . Sample size calculations for matched case–control studies of gene-environment interaction. Statistics in Medicine 2002; 21: 35–50.

    Article  Google Scholar 

  33. Oliphant A, Barker DL, Stuelpnagel JR, Chee MS . BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques Suppl 2002; 32: S56–S61.

    Article  Google Scholar 

  34. Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P . A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

    Article  Google Scholar 

  35. Pruitt KD, Tatusova T, Maglott DR . NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 2005; 33 (Database issue): D501–D504.

    Article  CAS  Google Scholar 

  36. Douglas JA, Skol AD, Boehnke M . Probability of detection of genotyping errors and mutations as inheritance inconsistencies in nuclear-family data. Am J Hum Genet 2002; 70: 487–495.

    Article  CAS  Google Scholar 

  37. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin S, Chakravarti A, Cutler DJ . Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studies. Nat Genet 2004; 36: 1181–1188.

    Article  CAS  Google Scholar 

  39. Lin S, Chakravarti A, Cutler DJ . Haplotype and missing data inference in nuclear families. Genome Res 2004; 14: 1624–1632.

    Article  CAS  Google Scholar 

  40. Lin S, Cutler DJ, Zwick ME, Chakravarti A . Haplotype inference in random population samples. Am J Hum Genet 2002; 71: 1129–1137.

    Article  CAS  Google Scholar 

  41. Lin PI, McInnis MG, Potash JB, Willour VL, Mackinnon DF, Miao K et al. Assessment of the effect of age at onset on linkage to bipolar disorder: evidence on chromosomes 18p and 21q. Am J Hum Genet 2005; 77: 545–555.

    Article  CAS  Google Scholar 

  42. Weinberg CR . Methods for detection of parent-of-origin effects in genetic studies of case–parents triads. Am J Hum Genet 1999; 65: 229–235.

    Article  CAS  Google Scholar 

  43. Le Stunff C, Fallin D, Bougneres P . Paternal transmission of the very common class I INS VNTR alleles predisposes to childhood obesity. Nat Genet 2001; 29: 96–99.

    Article  CAS  Google Scholar 

  44. Petronis A . Epigenetics and bipolar disorder: new opportunities and challenges. Am J Med Genet C Semin Med Genet 2003; 123: 65–75.

    Article  Google Scholar 

  45. Bjornsson HT, Fallin MD, Feinberg AP . An integrated epigenetic and genetic approach to common human disease. Trends Genet 2004; 20: 350–358.

    Article  CAS  Google Scholar 

  46. Jiang YH, Bressler J, Beaudet AL . Epigenetics and human disease. Annu Rev Genomics Hum Genet 2004; 5: 479–510.

    Article  CAS  Google Scholar 

  47. Marchini J, Cardon LR, Phillips MS, Donnelly P . The effects of human population structure on large genetic association studies. Nat Genet 2004; 36: 512–517.

    Article  CAS  Google Scholar 

  48. Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML, Groop LC et al. Demonstrating stratification in a European American population. Nat Genet 2005; 37: 868–872.

    Article  CAS  Google Scholar 

  49. Morison IM, Ramsay JP, Spencer HG . A census of mammalian imprinting. Trends Genet 2005; 21: 457–465.

    Article  CAS  Google Scholar 

  50. OMIM Online Mendelian Inheritance in Man, OMIM (TM) McKusick–Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information (Bethesda, MD), world wide web URL: http://www.ncbi.nlm.nih.gov/omim.

  51. Corradi JP, Ravyn V, Robbins AK, Hagan KW, Peters MF, Bostwick R et al. Alternative transcripts and evidence of imprinting of GNAL on 18p11.2. Mol Psychiatry 2005; 10: 1017–1025.

    Article  CAS  Google Scholar 

  52. Lettice LA, Horikoshi T, Heaney SJ, van Baren MJ, van der Linde HC, Breedveld GJ et al. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc Natl Acad Sci USA 2002; 99: 7548–7553.

    Article  CAS  Google Scholar 

  53. Washizuka S, Kametani M, Sasaki T, Tochigi M, Umekage T, Kohda K et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with schizophrenia in the Japanese population. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 301–304.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A E Pulver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulle, J., Fallin, M., Lasseter, V. et al. Dense SNP association study for bipolar I disorder on chromosome 18p11 suggests two loci with excess paternal transmission. Mol Psychiatry 12, 367–375 (2007). https://doi.org/10.1038/sj.mp.4001916

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001916

Keywords

This article is cited by

Search

Quick links