Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide scan supports the existence of a susceptibility locus for schizophrenia and bipolar disorder on chromosome 15q26

Abstract

Schizophrenia (SZ) and bipolar disorder (BPD) are two severe psychiatric diseases with a strong genetic component. In agreement with the ‘continuum theory’, which suggests an overlap between these disorders, the existence of genes that affect simultaneously susceptibility to SZ and BPD has been hypothesized. In this study we performed a 7.5 cM genome scan in a sample of 16 families affected by SZ and BPD, all originating from the same northeast Italian population. Using both parametric and non-parametric analyses we identified linkage peaks on four regions (1p, 1q, 4p and 15q), which were then subjected to a follow-up study with an increased marker density. The strongest linkage was obtained on chromosome 15q26 with a non-parametric linkage of 3.05 for marker D15S1014 (nominal P=0.00197). Interestingly, evidence for linkage with the same marker has been reported previously by an independent study performed on SZ and BPD families from Quebec. In this region, the putative susceptibility gene ST8SIA2 (also known as SIAT8B) was recently associated with SZ in a Japanese sample. However, our allele frequency analyses of the two single-nucleotide polymorphisms (SNPs) with putative functional outcome (rs3759916 and rs3759914) suggest that these polymorphisms are unlikely to be directly involved in SZ in our population. In conclusion, our results support the presence of a gene in 15q26 that influences the susceptibility to both SZ and BPD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Association: Washington, DC, 1994.

  2. Cardno AG, Gottesman II . Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 2000; 97: 12–17.

    Article  CAS  PubMed  Google Scholar 

  3. Smoller JW, Finn CT . Family, twin, and adoption studies of bipolar disorder. Am J Med Genet (Semin Med Genet) 2003; 123: 48–58.

    Article  Google Scholar 

  4. Moller HJ . Bipolar disorder and schizophrenia: distinct illnesses or a continuum? J Clin Psychiatry 2003; 64 (Suppl 6): 23–27.

    PubMed  Google Scholar 

  5. Craddock N, Owen MJ . The beginning of the end for the Kraepelinian dichotomy. Br J Psychiatry 2005; 186: 364–366.

    Article  PubMed  Google Scholar 

  6. Berrettini W . Evidence for shared susceptibility in bipolar disorder and schizophrenia. Am J Med Genet (Semin Med Genet) 2003; 123: 59–64.

    Article  Google Scholar 

  7. Craddock N, O’Donovan MC, Owen MJ . The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet 2005; 42: 193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sklar P, Pato MT, Kirby A, Petryshen TL, Medeiros H, Carvalho C et al. Genome-wide scan in Portuguese Island families identifies 5q31–5q35 as a susceptibility locus for schizophrenia and psychosis. Mol Psychiatry 2004; 9: 213–218.

    Article  CAS  PubMed  Google Scholar 

  9. Park N, Juo SH, Cheng R, Liu J, Loth JE, Lilliston B et al. Linkage analysis of psychosis in bipolar pedigrees suggests novel putative loci for bipolar disorder and shared susceptibility with schizophrenia. Mol Psychiatry 2004; 9: 1091–1099.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng R, Juo SH, Loth JE, Nee J, Iossifov I, Blumenthal R et al. Genome-wide linkage scan in a large bipolar disorder sample from the National Institute of Mental Health genetics initiative suggests putative loci for bipolar disorder, psychosis, suicide, and panic disorder. Mol Psychiatry 2006; 11: 252–260.

    Article  CAS  PubMed  Google Scholar 

  11. Hamshere ML, Bennett P, Williams N, Segurado R, Cardno A, Norton N et al. Genomewide linkage scan in schizoaffective disorder: significant evidence for linkage at 1q42 close to DISC1, and suggestive evidence at 22q11 and 19p13. Arch Gen Psychiatry 2005; 62: 1081–1088.

    Article  CAS  PubMed  Google Scholar 

  12. Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Montgrain N et al. Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. Mol Psychiatry 2005; 10: 486–499.

    Article  CAS  PubMed  Google Scholar 

  13. Hennah W, Varilo T, Kestila M, Paunio T, Arajarvi R, Haukka J et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003; 12: 3151–3159.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Yu X, Yuan Y, Ling Y, Ruan Y, Si T et al. Positive association of the human frizzled 3 (FZD3) gene haplotype with schizophrenia in Chinese Han population. Am J Med Genet (Neuropsychiatr Genet) 2004; 129: 16–19.

    Google Scholar 

  15. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Arai M, Yamada K, Toyota T, Obata N, Haga S, Yoshida Y et al. Association between polymorphisms in the promoter region of the sialyltransferase 8B (ST8SIA2) gene and schizophrenia. Biol Psychiatry 2006; 59: 652–659.

    Article  CAS  PubMed  Google Scholar 

  17. Pimm J, McQuillin A, Thirumalai S, Lawrence J, Quested D, Bass N et al. The Epsin 4 gene on chromosome 5q, which encodes the clathrin-associated protein enthoprotin, is involved in the genetic susceptibility to schizophrenia. Am J Hum Genet 2005; 76: 902–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang RQ, Zhao XZ, Shi YY, Tang W, Gu NF, Feng GY et al. Family-based association study of Epsin 4 and Schizophrenia. Mol Psychiatry 2006; 11: 395–399.

    Article  CAS  PubMed  Google Scholar 

  19. Petryshen TL, Middleton FA, Tahl AR, Rockwell GN, Purcell S, Aldinger KA et al. Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Mol Psychiatry 2005; 10: 1074–1088.

    Article  CAS  PubMed  Google Scholar 

  20. Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75: 862–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thomson PA, Wray NR, Millar JK, Evans KL, Hellard SL, Condie A et al. Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry 2005; 10: 657–668.

    Article  CAS  PubMed  Google Scholar 

  22. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72: 83–87.

    Article  CAS  PubMed  Google Scholar 

  23. Green EK, Raybould R, Macgregor S, Gordon-Smith K, Heron J, Hyde S et al. Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder. Arch Gen Psychiatry 2005; 62: 642–648.

    Article  CAS  PubMed  Google Scholar 

  24. Peltonen L, Palotie A, Lange K . Use of population isolates for mapping complex traits. Nat Rev Genet 2000; 1: 182–190.

    Article  CAS  PubMed  Google Scholar 

  25. Kong X, Murphy K, Raj T, He C, White PS, Matise TC . A combined linkage-physical map of the human genome. Am J Hum Genet 2004; 75: 1143–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. O’Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sullivan PF, Neale BM, Neale MC, van den Oord E, Kendler KS . Multipoint and single point non-parametric linkage analysis with imperfect data. Am J Med Genet (Neuropsychiatr Genet) 2003; 121: 89–94.

    Article  Google Scholar 

  28. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES . Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996; 58: 1347–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bourgain C, Hoffjan S, Nicolae R, Newman D, Steiner L, Walker K et al. Novel case–control test in a founder population identifies P-selectin as an atopy-susceptibility locus. Am J Hum Genet 2003; 73: 612–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  PubMed  Google Scholar 

  31. Barrai I, Rodriguez-Larralde A, Mamolini E, Scapoli C . Isonymy and isolation by distance in Italy. Hum Biol 1999; 71: 947–961.

    CAS  PubMed  Google Scholar 

  32. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    Article  CAS  PubMed  Google Scholar 

  33. Niculescu III AB, Segal DS, Kuczenski R, Barrett T, Hauger RL, Kelsoe JR . Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol Genomics 2000; 4: 83–91.

    Article  CAS  PubMed  Google Scholar 

  34. Kempisty B, Mostowska A, Gorska I, Luczak M, Czerski P, Szczepankiewicz A et al. Association of 677C>T polymorphism of methylenetetrahydrofolate reductase (MTHFR) gene with bipolar disorder and schizophrenia. Neurosci Lett 2006; 400: 267–271.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the families for participating to this research. We are grateful to Dr A Coppe for ‘alaconsoool’ program and to Dr Vitiello for help in manuscript editing. This study was conducted for the Regione Veneto, Giunta Regionale, Ricerca Sanitaria Finalizzata, Venezia Italia, Grant No 149/03; main responsible for the project: Dr P Peruzzi. Financial support was also given by MIUR (National funds of Ministry of Education, University and Research) and by the Foundation of Cassa di Risparmio di Padova e Rovigo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Vazza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vazza, G., Bertolin, C., Scudellaro, E. et al. Genome-wide scan supports the existence of a susceptibility locus for schizophrenia and bipolar disorder on chromosome 15q26. Mol Psychiatry 12, 87–93 (2007). https://doi.org/10.1038/sj.mp.4001895

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001895

Keywords

This article is cited by

Search

Quick links