Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prefrontal hyperactivation during working memory task in untreated individuals with major depressive disorder

Abstract

The prefrontal cortex, a part of the limbic-thalamic-cortical network, participates in regulation of mood, cognition and behavior and has been implicated in the pathophysiology of major depressive disorder (MDD). Many neuropsychological studies demonstrate impairment of working memory in patients with MDD. However, there are few functional neuroimaging studies of MDD patients during working memory processing, and most of the available ones included medicated patients or patients with both MDD and bipolar disorder. We used functional magnetic resonance imaging (fMRI) to measure prefrontal cortex function during working memory processing in untreated depressed patients with MDD. Fifteen untreated individuals with Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition recurrent MDD (mean age±s.d.=34.3±11.5 years) and 15 healthy comparison subjects (37.7±12.1 years) matched for age, sex and race were studied using a GE/Elscint 2T MR system. An echo-planar MRI sequence was used to acquire 24 axial slices. The n-back task (0-back, 1-back and 2-back) was used to elicit frontal cortex activation. Data were analyzed with a multiple regression analysis using the FSL-FEAT software. MDD patients showed significantly greater left dorsolateral cortex activation during the n-back task compared to the healthy controls (P<0.01), although task performance was similar in the two groups. Furthermore, the patients showed significant anterior cingulate cortex activation during the task, but the comparison subjects did not (P<0.01). This study provides in vivo imaging evidence of abnormal frontolimbic circuit function during working memory processing in individuals with MDD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Soares JC, Mann JJ . The anatomy of mood disorders – review of structural neuroimaging studies. Biol Psychiatry 1997; 41: 86–106.

    Article  CAS  Google Scholar 

  2. Rogers MA, Kasai K, Koji M, Fukuda R, Iwanami A, Nakagome K et al. Executive and prefrontal dysfunction in unipolar depression: a review of neuropsychological and imaging evidence. Neurosci Res 2004; 50: 1–11.

    Article  Google Scholar 

  3. Soares JC, Mann JJ . The functional neuroanatomy of mood disorders. J Psychiatr Res 1997; 31: 393–432.

    Article  CAS  Google Scholar 

  4. Brambilla P, Nicoletti MA, Harenski K, Sassi RB, Mallinger AG, Frank E et al. Anatomical MRI study of subgenual prefrontal cortex in bipolar and unipolar subjects. Neuropsychopharmacology 2002; 27: 792–799.

    Article  Google Scholar 

  5. Lacerda AL, Keshavan MS, Hardan AY, Yorbik O, Brambilla P, Sassi RB et al. Anatomic evaluation of the orbitofrontal cortex in major depressive disorder. Biol Psychiatry 2004; 55: 353–358.

    Article  Google Scholar 

  6. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45: 1085–1098.

    Article  CAS  Google Scholar 

  7. Taylor WD, MacFall JR, Payne ME, McQuoid DR, Provenzale JM, Steffens DC et al. Late-life depression and microstructural abnormalities in dorsolateral prefrontal cortex white matter. Am J Psychiatry 2004; 161: 1293–1296.

    Article  Google Scholar 

  8. Ebmeier KP, Cavanagh JT, Moffoot AP, Glabus MF, O’Carroll RE, Goodwin GM . Cerebral perfusion correlates of depressed mood. Br J Psychiatry 1997; 170: 77–81.

    Article  CAS  Google Scholar 

  9. Dolan RJ, Bench CJ, Liddle PF, Friston KJ, Frith CD, Grasby PM et al. Dorsolateral prefrontal cortex dysfunction in the major psychoses; symptom or disease specificity? J Neurol Neurosurg Psychiatry 1993; 56: 1290–1294.

    Article  CAS  Google Scholar 

  10. Buchsbaum MS, Wu J, Siegel BV, Hackett E, Trenary M, Abel L et al. Effect of sertraline on regional metabolic rate in patients with affective disorder. Biol Psychiatry 1997; 41: 15–22.

    Article  CAS  Google Scholar 

  11. Dunn RT, Kimbrell TA, Ketter TA, Frye MA, Willis MW, Luckenbaugh DA et al. Principal components of the beck depression inventory and regional cerebral metabolism in unipolar and bipolar depression. Biol Psychiatry 2002; 51: 387–399.

    Article  CAS  Google Scholar 

  12. Drevets WC, Price JL, Simpson JR, Todd RD, Reich T, Vannier M et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386: 824–827.

    Article  CAS  Google Scholar 

  13. Channon S, Baker JE, Robertson MM . Working memory in clinical depression: an experimental study. Psychol Med 1993; 23: 87–91.

    Article  CAS  Google Scholar 

  14. Lyness SA, Eaton EM, Schneider LS . Cognitive performance in older and middle-aged depressed outpatients and controls. J Gerontol 1994; 49: P129–P136.

    Article  CAS  Google Scholar 

  15. Fossati P, Amar G, Raoux N, Ergis AM, Allilaire JF . Executive functioning and verbal memory in young patients with unipolar depression and schizophrenia. Psychiatry Res 1999; 89: 171–187.

    Article  CAS  Google Scholar 

  16. Elliott R, Sahakian BJ, McKay AP, Herrod JJ, Robbins TW, Paykel ES . Neuropsychological impairments in unipolar depression: the influence of perceived failure on subsequent performance. Psychol Med 1996; 26: 975–989.

    Article  CAS  Google Scholar 

  17. Beats BC, Sahakian BJ, Levy R . Cognitive performance in tests sensitive to frontal lobe dysfunction in the elderly depressed. Psychol Med 1996; 26: 591–603.

    Article  CAS  Google Scholar 

  18. Landro NI, Stiles TC, Sletvold H . Neuropsychological function in nonpsychotic unipolar major depression. Neuropsychiatry Neuropsychol Behav Neurol 2001; 14: 233–240.

    CAS  PubMed  Google Scholar 

  19. Harvey PO, Le Bastard G, Pochon JB, Levy R, Allilaire JF, Dubois B et al. Executive functions and updating of the contents of working memory in unipolar depression. J Psychiatr Res 2004; 38: 567–576.

    Article  CAS  Google Scholar 

  20. Nebes RD, Butters MA, Mulsant BH, Pollock BG, Zmuda MD, Houck PR et al. Decreased working memory and processing speed mediate cognitive impairment in geriatric depression. Psychol Med 2000; 30: 679–691.

    Article  CAS  Google Scholar 

  21. Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC . A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 1997; 5: 49–62.

    Article  CAS  Google Scholar 

  22. LaBar KS, Gitelman DR, Parrish TB, Mesulam M . Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects. Neuroimage 1999; 10: 695–704.

    Article  CAS  Google Scholar 

  23. Kondo H, Morishita M, Osaka N, Osaka M, Fukuyama H, Shibasaki H . Functional roles of the cingulo-frontal network in performance on working memory. Neuroimage 2004; 21: 2–14.

    Article  Google Scholar 

  24. Callicott JH, Mattay VS, Bertolino A, Finn K, Coppola R, Frank JA et al. Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cereb Cortex 1999; 9: 20–26.

    Article  CAS  Google Scholar 

  25. Harvey PO, Fossati P, Pochon JB, Levy R, Lebastard G, Lehericy S et al. Cognitive control and brain resources in major depression: an fMRI study using the n-back task. Neuroimage 2005; 26: 860–869.

    Article  Google Scholar 

  26. George MS, Ketter TA, Parekh PI, Rosinsky N, Ring HA, Pazzaglia PJ et al. Blunted left cingulate activation in mood disorder subjects during a response interference task (the stroop). J Neuropsychiatry Clin Neurosci 1997; 9: 55–63.

    Article  CAS  Google Scholar 

  27. Barch DM, Sheline YI, Csernansky JG, Snyder AZ . Working memory and prefrontal cortex dysfunction: specificity to schizophrenia compared with major depression. Biol Psychiatry 2003; 53: 376–384.

    Article  Google Scholar 

  28. Okada G, Okamoto Y, Morinobu S, Yamawaki S, Yokota N . Attenuated left prefrontal activation during a verbal fluency task in patients with depression. Neuropsychobiology 2003; 47: 21–26.

    Article  CAS  Google Scholar 

  29. Berman KF, Doran AR, Pickar D, Weinberger DR . Is the mechanism of prefrontal hypofunction in depression the same as in schizophrenia? Regional cerebral blood flow during cognitive activation. Br J Psychiatry 1993; 162: 183–192.

    Article  CAS  Google Scholar 

  30. Elliott R, Baker SC, Rogers RD, O’Leary DA, Paykel ES, Frith CD et al. Prefrontal dysfunction in depressed patients performing a complex planning task: a study using positron emission tomography. Psychol Med 1997; 27: 931–942.

    Article  CAS  Google Scholar 

  31. Hugdahl K, Rund BR, Lund A, Asbjornsen A, Egeland J, Ersland L et al. Brain activation measured with fMRI during a mental arithmetic task in schizophrenia and major depression. Am J Psychiatry 2004; 161: 286–293.

    Article  Google Scholar 

  32. First MB, Spitzer RL, Gibbon M, Williams JBW . Structured Clinical Interview for DSM-IV Axis I Disorders, Research Version, Patient Edition. Biometrics Research Department, New York State Psychiatric Institute: New York, 1996.

    Google Scholar 

  33. First MB, Spitzer RL, Gibbon M, Janet W . Structured Clinical Interview for DSM-IV Axis I Disorders – Non-Patient Edition. Biometrics Research Department, New York State Psychiatric Institute: New York, 1996.

    Google Scholar 

  34. Hamilton M . A rating scale for depression. J Neurol Neurosurg Psychiatry 1960; 23: 56–62.

    Article  CAS  Google Scholar 

  35. Oldfield RC . The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971; 9: 97–113.

    Article  CAS  Google Scholar 

  36. Callicott JH, Ramsey NF, Tallent K, Bertolino A, Knable MB, Coppola R et al. Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology 1998; 18: 186–196.

    Article  CAS  Google Scholar 

  37. Glahn DC, Ragland JD, Abramoff A, Barrett J, Laird AR, Bearden CE et al. Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp 2005; 25: 60–69.

    Article  Google Scholar 

  38. Fletcher PC, Henson RN . Frontal lobes and human memory: insights from functional neuroimaging. Brain 2001; 124: 849–881.

    Article  CAS  Google Scholar 

  39. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23 (Suppl 1): S208–S219.

    Article  Google Scholar 

  40. Jenkinson M, Bannister P, Brady M, Smith S . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825–841.

    Article  Google Scholar 

  41. Worsley KJ, Evans AC, Marrett S, Neelin P . A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 1992; 12: 900–918.

    Article  CAS  Google Scholar 

  42. Friston KJ, Worsley KJ, Frakowiak RSJ, Mazziotta JC, Evans AC . Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1994; 1: 214–220.

    Google Scholar 

  43. Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC . Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 1995; 33: 636–647.

    Article  CAS  Google Scholar 

  44. Mega MS, Cummings JL . Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci 1994; 6: 358–370.

    Article  CAS  Google Scholar 

  45. Caetano SC, Fonseca M, Olvera RL, Nicoletti M, Hatch JP, Stanley JA et al. Proton spectroscopy study of the left dorsolateral prefrontal cortex in pediatric depressed patients. Neurosci Lett 2005; 384: 321–326.

    Article  CAS  Google Scholar 

  46. Kumar A, Thomas A, Lavretsky H, Yue K, Huda A, Curran J et al. Frontal white matter biochemical abnormalities in late-life major depression detected with proton magnetic resonance spectroscopy. Am J Psychiatry 2002; 159: 630–636.

    Article  Google Scholar 

  47. Adler CM, Holland SK, Schmithorst V, Tuchfarber MJ, Strakowski SM . Changes in neuronal activation in patients with bipolar disorder during performance of a working memory task. Bipolar Disord 2004; 6: 540–549.

    Article  Google Scholar 

  48. Audenaert K, Goethals I, Van Laere K, Lahorte P, Brans B, Versijpt J et al. SPECT neuropsychological activation procedure with the verbal fluency test in attempted suicide patients. Nucl Med Commun 2002; 23: 907–916.

    Article  Google Scholar 

  49. Monks PJ, Thompson JM, Bullmore ET, Suckling J, Brammer MJ, Williams SC et al. A functional MRI study of working memory task in euthymic bipolar disorder: evidence for task-specific dysfunction. Bipolar Disord 2004; 6: 550–564.

    Article  Google Scholar 

  50. George MS, Nahas Z, Molloy M, Speer AM, Oliver NC, Li XB et al. A controlled trial of daily left prefrontal cortex TMS for treating depression. Biol Psychiatry 2000; 48: 962–970.

    Article  CAS  Google Scholar 

  51. Nahas Z, Lomarev M, Roberts DR, Shastri A, Lorberbaum JP, Teneback C et al. Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI. Biol Psychiatry 2001; 50: 712–720.

    Article  CAS  Google Scholar 

  52. Smith EE, Jonides J . Storage and executive processes in the frontal lobes. Science 1999; 283: 1657–1661.

    Article  CAS  Google Scholar 

  53. Luks TL, Simpson GV, Feiwell RJ, Miller WL . Evidence for anterior cingulate cortex involvement in monitoring preparatory attentional set. Neuroimage 2002; 17: 792–802.

    Article  Google Scholar 

  54. Devinsky O, Morrell MJ, Vogt BA . Contributions of anterior cingulate cortex to behaviour. Brain 1995; 118 (Part 1): 279–306.

    Article  Google Scholar 

  55. Bush G, Luu P, Posner MI . Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 2000; 4: 215–222.

    Article  CAS  Google Scholar 

  56. Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L et al. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol Psychiatry 2005; 57: 1079–1088.

    Article  Google Scholar 

  57. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 1999; 156: 675–682.

    CAS  Google Scholar 

  58. Manoach DS, Press DZ, Thangaraj V, Searl MM, Goff DC, Halpern E et al. Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry 1999; 45: 1128–1137.

    Article  CAS  Google Scholar 

  59. Callicott JH, Egan MF, Mattay VS, Bertolino A, Bone AD, Verchinksi B et al. Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am J Psychiatry 2003; 160: 709–719.

    Article  Google Scholar 

  60. Jansma JM, Ramsey NF, van der Wee NJ, Kahn RS . Working memory capacity in schizophrenia: a parametric fMRI study. Schizophr Res 2004; 68: 159–171.

    Article  CAS  Google Scholar 

  61. Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR . Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 2003; 160: 2209–2215.

    Article  Google Scholar 

  62. Manoach DS . Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res 2003; 60: 285–298.

    Article  Google Scholar 

  63. Aalto S, Bruck A, Laine M, Nagren K, Rinne JO . Frontal and temporal dopamine release during working memory and attention tasks in healthy humans: a positron emission tomography study using the high-affinity dopamine D2 receptor ligand 11FLB 457. J Neurosci 2005; 25: 2471–2477.

    Article  CAS  Google Scholar 

  64. Muller U, von Cramon DY, Pollmann S . D1- versus D2-receptor modulation of visuospatial working memory in humans. J Neurosci 1998; 18: 2720–2728.

    Article  CAS  Google Scholar 

  65. Goldman-Rakic PS . Regional and cellular fractionation of working memory. Proc Natl Acad Sci USA 1996; 93: 13473–13480.

    Article  CAS  Google Scholar 

  66. Ellis KA, Nathan PJ . The pharmacology of human working memory. Int J Neuropsychopharmacol 2001; 4: 299–313.

    Article  CAS  Google Scholar 

  67. Ebert D, Feistel H, Kaschka W, Barocka A, Pirner A . Single photon emission computerized tomography assessment of cerebral dopamine D2 receptor blockade in depression before and after sleep deprivation – preliminary results. Biol Psychiatry 1994; 35: 880–885.

    Article  CAS  Google Scholar 

  68. Larisch R, Klimke A, Vosberg H, Loffler S, Gaebel W, Muller-Gartner HW . In vivo evidence for the involvement of dopamine-D2 receptors in striatum and anterior cingulate gyrus in major depression. Neuroimage 1997; 5: 251–260.

    Article  CAS  Google Scholar 

  69. Meyer JH, Kruger S, Wilson AA, Christensen BK, Goulding VS, Schaffer A et al. Lower dopamine transporter binding potential in striatum during depression. Neuroreport 2001; 12: 4121–4125.

    Article  CAS  Google Scholar 

  70. Shah PJ, Ogilvie AD, Goodwin GM, Ebmeier KP . Clinical and psychometric correlates of dopamine D2 binding in depression. Psychol Med 1997; 27: 1247–1256.

    Article  CAS  Google Scholar 

  71. Gorman JM, Kent JM, Sullivan GM, Coplan JD . Neuroanatomical hypothesis of panic disorder, revised. Am J Psychiatry 2000; 157: 493–505.

    Article  CAS  Google Scholar 

  72. Ninan PT . The functional anatomy, neurochemistry, and pharmacology of anxiety. J Clin Psychiatry 1999; 60 (Suppl 22): 12–17.

    CAS  PubMed  Google Scholar 

  73. Hull AM . Neuroimaging findings in post-traumatic stress disorder. Systematic review. Br J Psychiatry 2002; 181: 102–110.

    Article  Google Scholar 

  74. Kuelz AK, Hohagen F, Voderholzer U . Neuropsychological performance in obsessive-compulsive disorder: a critical review. Biol Psychol 2004; 65: 185–236.

    Article  Google Scholar 

  75. Clark CR, McFarlane AC, Morris P, Weber DL, Sonkkilla C, Shaw M et al. Cerebral function in posttraumatic stress disorder during verbal working memory updating: a positron emission tomography study. Biol Psychiatry 2003; 53: 474–481.

    Article  Google Scholar 

  76. Purcell R, Maruff P, Kyrios M, Pantelis C . Neuropsychological deficits in obsessive-compulsive disorder: a comparison with unipolar depression, panic disorder, and normal controls. Arch Gen Psychiatry 1998; 55: 415–423.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by MH 01736, MH 068662, RR020571, UTHSCSA GCRC Imaging Core (M01-RR-01346), the Krus Endowed Chair in Psychiatry (UTHSCSA), the Dana Foundation, Veterans Administration (VA Merit Review) and CNPq (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Soares.

Additional information

These findings were presented in part at the annual meeting of the Society of Biological Psychiatry, May 19–21, 2005, Atlanta, Georgia, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuo, K., Glahn, D., Peluso, M. et al. Prefrontal hyperactivation during working memory task in untreated individuals with major depressive disorder. Mol Psychiatry 12, 158–166 (2007). https://doi.org/10.1038/sj.mp.4001894

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001894

Keywords

This article is cited by

Search

Quick links