Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evidence for association of DNA sequence variants in the phosphatidylinositol-4-phosphate 5-kinase IIα gene (PIP5K2A) with schizophrenia

Abstract

Linkage studies in schizophrenia have identified a candidate region on chromosome 10p14–11 as reported for several independent samples. We investigated association of DNA sequence variants in a plausible candidate gene located in this region, the gene for phosphatidylinositol-4-phosphate 5-kinase IIα (PIP5K2A), in a sample of 65 sib-pair families for which linkage had been reported. Evidence for association was obtained for 15 polymorphisms spanning 73.6 kb in the genomic region of the gene between intron 4 and the 3′ untranslated region, a region with high degree of linkage disequilibrium. Single nucleotide polymorphism (SNP) rs10828317 located in exon 7 and causing a non-synonymous amino-acid exchange (asparagine/serine) produced a P-value of 0.001 (experiment-wide significance level 0.00275) for over-transmission of the major allele coding for serine, analysed by transmission disequilibrium test using FAMHAP. Association of this SNP with schizophrenia has been also described in a sample of 273 Dutch schizophrenic patients and 580 controls (P=0.0004). PIP5K2A is involved in the biosynthesis of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), one of the key metabolic crossroads in phosphoinositide signalling. PI(4,5)P2 plays a role in membrane transduction of neurotransmitter signals as well as in intracellular signalling, pathways that may be impaired in schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Gottesman I . Schizophrenia Genesis. WH Freeman: New York, 1991.

    Google Scholar 

  2. Risch NJ . Searching for genetic determinants in the new millennium. Nature 2000; 405: 847–856.

    Article  CAS  PubMed  Google Scholar 

  3. Riley BP, McGuffin P . Linkage and associated studies of schizophrenia. Am J Med Genet 2000; 97: 23–44.

    Article  CAS  PubMed  Google Scholar 

  4. Schizophrenia Linkage Collaborative Group for Chromosomes 3a. Additional support for schizophrenia linkage on chromosomes 6 and 8: a multicenter study. Schizophrenia Linkage Collaborative Group for Chromosomes 3, 6 and 8. Am J Med Genet 1996; 67: 580–594.

  5. Kendler KS, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F et al. Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish Study of High-Density Schizophrenia Families. Am J Psychiat 1996; 153: 1534–1540.

    Article  CAS  PubMed  Google Scholar 

  6. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    Article  CAS  PubMed  Google Scholar 

  7. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72: 83–87.

    Article  CAS  PubMed  Google Scholar 

  9. Schwab SG, Albus M, Hallmayer J, Honig S, Borrmann M, Lichtermann D et al. Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis. Nat Genet 1995; 11: 325–327.

    Article  CAS  PubMed  Google Scholar 

  10. Straub RE, MacLean CJ, O’Neill FA, Burke J, Murphy B, Duke F et al. A potential vulnerability locus for schizophrenia on chromosome 6p24–22: evidence for genetic heterogeneity. Nat Genet 1995; 11: 287–293.

    Article  CAS  PubMed  Google Scholar 

  11. Turecki G, Rouleau GA, Joober R, Mari J, Morgan K . Schizophrenia and chromosome 6p. Am J Med Genet 1997; 74: 195–198.

    Article  CAS  PubMed  Google Scholar 

  12. Wang S, Sun CE, Walczak CA, Ziegle JS, Kipps BR, Goldin LR et al. Evidence for a susceptibility locus for schizophrenia on chromosome 6pter–p22. Nat Genet 1995; 10: 41–46.

    Article  PubMed  Google Scholar 

  13. Moises HW, Yang L, Kristbjarnarson H, Wiese C, Byerley W, Macciardi F et al. An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat Genet 1995; 11: 321–324.

    Article  CAS  PubMed  Google Scholar 

  14. Nurnberger Jr JI, Foroud T . Chromosome 6 workshop report. Am J Med Genet 1999; 88: 233–238.

    Article  PubMed  Google Scholar 

  15. Hwu HG, Lin MW, Lee PC, Lee SF, Ou-Yang WC, Liu CM . Evaluation of linkage of markers on chromosome 6p with schizophrenia in Taiwanese families. Am J Med Genet 2000; 96: 74–78.

    Article  CAS  PubMed  Google Scholar 

  16. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Den Bogaert A, Schumacher J, Schulze TG, Otte AC, Ohlraun S, Kovalenko S et al. The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. Am J Hum Genet 2003; 73: 1438–1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M et al. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 2003; 72: 185–190.

    Article  CAS  PubMed  Google Scholar 

  19. Kirov G, Ivanov D, Williams NM, Preece A, Nikolov I, Milev R et al. Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent–offspring trios from Bulgaria. Biol Psychiat 2004; 55: 971–975.

    Article  CAS  PubMed  Google Scholar 

  20. Funke B, Finn CT, Plocik AM, Lake S, DeRosse P, Kane JM et al. Association of the DTNBP1 locus with schizophrenia in a U.S. population. Am J Hum Genet 2004; 75: 891–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 2002; 11: 1373–1380.

    Article  CAS  PubMed  Google Scholar 

  23. Brzustowicz LM, Simone J, Mohseni P, Hayter JE, Hodgkinson KA, Chow EW et al. Linkage disequilibrium mapping of schizophrenia susceptibility to the CAPON region of chromosome 1q22. Am J Hum Genet 2004; 74: 1057–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  25. Hennah W, Varilo T, Kestila M, Paunio T, Arajarvi R, Haukka J et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003; 12: 3151–3159.

    Article  CAS  PubMed  Google Scholar 

  26. Duan J, Martinez M, Sanders AR, Hou C, Saitou N, Kitano T et al. Polymorphisms in the trace amine receptor 4 (TRAR4) gene on chromosome 6q23.2 are associated with susceptibility to schizophrenia. Am J Hum Genet 2004; 75: 624–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pimm J, McQuillin A, Thirumalai S, Lawrence J, Quested D, Bass N et al. The Epsin 4 gene on chromosome 5q, which encodes the clathrin-associated protein enthoprotin, is involved in the genetic susceptibility to schizophrenia. Am J Hum Genet 2005; 76: 902–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiat 2005; 10: 804.

    Article  CAS  Google Scholar 

  29. Faraone SV, Matise T, Svrakic D, Pepple J, Malaspina D, Suarez B et al. Genome scan of European-American schizophrenia pedigrees: results of the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet 1998; 81: 290–295.

    Article  CAS  PubMed  Google Scholar 

  30. Foroud T, Castelluccio PF, Koller DL, Edenberg HJ, Miller M, Bowman E et al. Suggestive evidence of a locus on chromosome 10p using the NIMH genetics initiative bipolar affective disorder pedigrees. Am J Med Genet 2000; 96: 18–23.

    Article  CAS  PubMed  Google Scholar 

  31. Levinson DF, Holmans P, Straub RE, Owen MJ, Wildenauer DB, Gejman PV et al. Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III. Am J Hum Genet 2000; 67: 652–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rice JP, Goate A, Williams JT, Bierut L, Dorr D, Wu W et al. Initial genome scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 1, 6, 8, 10, and 12. Am J Med Genet 1997; 74: 247–253.

    Article  CAS  PubMed  Google Scholar 

  33. Schwab SG, Hallmayer J, Albus M, Lerer B, Hanses C, Kanyas K et al. Further evidence for a susceptibility locus on chromosome 10p14–p11 in 72 families with schizophrenia by nonparametric linkage analysis. Am J Med Genet 1998; 81: 302–307.

    Article  CAS  PubMed  Google Scholar 

  34. Straub RE, MacLean CJ, Martin RB, Ma Y, Myakishev MV, Harris-Kerr C et al. A schizophrenia locus may be located in region 10p15–p11. Am J Med Genet 1998; 81: 296–301.

    Article  CAS  PubMed  Google Scholar 

  35. DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW et al. A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiat 2002; 159: 803–812.

    Article  PubMed  Google Scholar 

  36. Holliday E, Mowry B, Chant D, Nyholt D . The importance of modelling heterogeneity in complex disease: application to NIMH Schizophrenia Genetics Initiative data. Hum Genet 2005; 117: 160–167.

    Article  PubMed  Google Scholar 

  37. Schwab SG, Hallmayer J, Albus M, Lerer B, Eckstein GN, Borrmann M et al. A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6. Mol Psychiat 2000; 5: 638–649.

    Article  CAS  Google Scholar 

  38. Risch N, Spiker D, Lotspeich L, Nouri N, Hinds D, Hallmayer J et al. A genomic screen of autism: evidence for a multilocus etiology. Am J Hum Genet 1999; 65: 493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Doughman RL, Firestone AJ, Anderson RA . Phosphatidylinositol phosphate kinases put PI4,5P(2) in its place. J Membr Biol 2003; 194: 77–89.

    Article  CAS  PubMed  Google Scholar 

  40. Anderson RA, Boronenkov IV, Doughman SD, Kunz J, Loijens JC . Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J Biol Chem 1999; 274: 9907–9910.

    Article  CAS  PubMed  Google Scholar 

  41. Rameh LE, Tolias KF, Duckworth BC, Cantley LC . A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 1997; 390: 192–196.

    Article  CAS  PubMed  Google Scholar 

  42. Fyer A, Endicott J, Mannuzza S, Klein D . Schedule for Affective Disorders and Schizophrenia-Lifetime Version (SADS-LA). New York State Psychiatric Institute: New York, 1985.

    Google Scholar 

  43. McGuffin P, Farmer A, Harvey I . A polydiagnostic application of operational criteria in studies of psychotic illness. Development and reliability of the OPCRIT system. Arch Gen Psychiat 1991; 48: 764–770.

    Article  CAS  PubMed  Google Scholar 

  44. Spitzer R, Endicott J, Robins E . Diagnostic Criteria for a Selected Group of Functional Disorders. New York State Psychiatric Institute: New York, 1978.

    Google Scholar 

  45. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T . Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 1989; 86: 2766–2770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen X, Levine L, Kwok PY . Fluorescence polarization in homogeneous nucleic acid analysis. Genome Res 1999; 9: 492–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hamilton SP, Slager SL, Helleby L, Heiman GA, Klein DF, Hodge SE et al. No association or linkage between polymorphisms in the genes encoding cholecystokinin and the cholecystokinin B receptor and panic disorder. Mol Psychiat 2001; 6: 59–65.

    Article  CAS  Google Scholar 

  48. Sklar P, Gabriel SB, McInnis MG, Bennett P, Lim YM, Tsan G et al. Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Brain-derived neutrophic factor. Mol Psychiat 2002; 7: 579–593.

    Article  CAS  Google Scholar 

  49. Buetow KH, Edmonson M, MacDonald R, Clifford R, Yip P, Kelley J et al. High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc Natl Acad Sci USA 2001; 98: 581–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kokoris M, Dix K, Moynihan K, Mathis J, Erwin B, Grass P et al. High-throughput SNP genotyping with the Masscode system. Mol Diagn 2000; 5: 329–340.

    Article  CAS  PubMed  Google Scholar 

  51. Becker T, Knapp M . Maximum-likelihood estimation of haplotype frequencies in nuclear families. Genet Epidemiol 2004; 27: 21–32.

    Article  PubMed  Google Scholar 

  52. Zhao H, Zhang S, Merikangas KR, Trixler M, Wildenauer DB, Sun F et al. Transmission/disequilibrium tests using multiple tightly linked markers. Am J Hum Genet 2000; 67: 936–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Knapp M, Becker T . Family-based association analysis with tightly linked markers. Hum Hered 2003; 56: 2–9.

    Article  PubMed  Google Scholar 

  54. Becker T, Knapp M . A powerful strategy to account for multiple testing in the context of haplotype analysis. Am J Hum Genet 2004; 75: 561–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hedrick PW . Gametic disequilibrium measures: proceed with caution. Genetics 1987; 117: 331–341.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li J, Ji L . Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 2005; 95: 221–227.

    Article  CAS  PubMed  Google Scholar 

  57. Nyholt DR . A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 2004; 74: 765–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim UJ, Birren BW, Slepak T, Mancino V, Boysen C, Kang HL et al. Construction and characterization of a human bacterial artificial chromosome library. Genomics 1996; 34: 213–218.

    Article  CAS  PubMed  Google Scholar 

  59. Boronenkov IV, Anderson RA . The sequence of phosphatidylinositol-4-phosphate 5-kinase defines a novel family of lipid kinases. J Biol Chem 1995; 270: 2881–2884.

    Article  CAS  PubMed  Google Scholar 

  60. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000; 26: 76–80.

    Article  CAS  PubMed  Google Scholar 

  61. Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG et al. Whole-genome patterns of common DNA variation in three human populations. Science 2005; 307: 1072–1079.

    Article  CAS  PubMed  Google Scholar 

  62. Harwood AJ . Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited. Mol Psychiat 2005; 10: 117–126.

    Article  CAS  Google Scholar 

  63. Sewekow CA, Schwab SG, Knapp M, Hallmayer J, Eckstein GN, Gabel S et al. Association of SNPs with schizophrenia on chromosome 10p, a region with previously detected linkage. Am J Med Genet 2003; 122B: 244.

    Google Scholar 

  64. Schwab SG, Sklar P, Hallmayer J, Albus M, Rietschel M, Lerer B et al. Association of SNPs with schizophrenia on chromosome 10p, a region with previously detected linkage. Am J Med Genet 2001; 105: 562.

    Google Scholar 

  65. Bakker SC, Hoogendoorn CLC, Hendriks J, Verzijlbergen K, Caron S, Verduijn W et al. The PIP5K2A and RGS4 genes are differentially associated with deficit and non-deficit schizophrenia. Genes Brain Behav, 13 April 2006 [E-pub ahead of print].

  66. Castellino AM, Parker GJ, Boronenkov IV, Anderson RA, Chao MV . A novel interaction between the juxtamembrane region of the p55 tumor necrosis factor receptor and phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem 1997; 272: 5861–5870.

    Article  CAS  PubMed  Google Scholar 

  67. Schwab SG, Mondabon S, Knapp M, Albus M, Hallmayer J, Borrmann-Hassenbach M et al. Association of tumor necrosis factor alpha gene −G308A polymorphism with schizophrenia. Schizophr Res 2003; 65: 19–25.

    Article  PubMed  Google Scholar 

  68. Boin F, Zanardini R, Pioli R, Altamura CA, Maes M, Gennarelli M . Association between −G308A tumor necrosis factor alpha gene polymorphism and schizophrenia. Mol Psychiat 2001; 6: 79–82.

    Article  CAS  Google Scholar 

  69. York JD, Odom AR, Murphy R, Ives EB, Wente SR . A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 1999; 285: 96–100.

    Article  CAS  PubMed  Google Scholar 

  70. Boronenkov IV, Loijens JC, Umeda M, Anderson RA . Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol Biol Cell 1998; 9: 3547–3560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Carricaburu V, Lamia KA, Lo E, Favereaux L, Payrastre B, Cantley LC et al. The phosphatidylinositol (PI)-5-phosphate 4-kinase type II enzyme controls insulin signaling by regulating PI-3,4,5-trisphosphate degradation. Proc Natl Acad Sci USA 2003; 100: 9867–9872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA . Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 2004; 36: 131–137.

    Article  CAS  PubMed  Google Scholar 

  73. Schwab SG, Hoefgen B, Hanses C, Hassenbach MB, Albus M, Lerer B et al. Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biol Psychiat 2005; 58: 446–450.

    Article  CAS  PubMed  Google Scholar 

  74. Rao VD, Misra S, Boronenkov IV, Anderson RA, Hurley JH . Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell 1998; 94: 829–839.

    Article  CAS  PubMed  Google Scholar 

  75. Cargill M, Daley GQ . Mining for SNPs: putting the common variants – common disease hypothesis to the test. Pharmacogenomics 2000; 1: 27–37.

    Article  CAS  PubMed  Google Scholar 

  76. Lander ES . The new genomics: global views of biology. Science 1996; 274: 536–539.

    Article  CAS  PubMed  Google Scholar 

  77. Stopkova P, Saito T, Fann CS, Papolos DF, Vevera J, Paclt I et al. Polymorphism screening of PIP5K2A: a candidate gene for chromosome 10p-linked psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2003; 123: 50–58.

    Article  Google Scholar 

Download references

Acknowledgements

We are extremely thankful to Dr SC Bakker (Department of Psychiatry and Department of Biomedical Genetics, University Medical Center, Utrecht, The Netherlands) for communicating data before publication. We are very grateful to the patients and their family members without whose support and interest this study would not have been possible. We gratefully acknowledge support from the German–Israeli Foundation (to BL and DBW), Deutsche Forschungsgemeinschaft SFB 400 (to SGS, MK, WM and DBW) and DFG Grant Kn378/1-3 (to MK). DBW is recipient of a NARSAD Independent Investigator Award. SGS would like to thank Professor Eric Lander for hospitality during the initial phase of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D B Wildenauer.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwab, S., Knapp, M., Sklar, P. et al. Evidence for association of DNA sequence variants in the phosphatidylinositol-4-phosphate 5-kinase IIα gene (PIP5K2A) with schizophrenia. Mol Psychiatry 11, 837–846 (2006). https://doi.org/10.1038/sj.mp.4001864

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001864

Keywords

This article is cited by

Search

Quick links