Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Brain-derived neurotrophic factor variants are associated with childhood-onset mood disorder: confirmation in a Hungarian sample

Abstract

Brain-derived neurotrophic factor (BDNF) is a nerve growth factor that has been implicated in the neurobiology of depression. Our group has previously reported an association between a BDNF variant and childhood-onset mood disorder (COMD) in an adult sample from Pittsburgh. We hypothesize that variants at the BDNF locus are associated with COMD. Six BDNF polymorphisms were genotyped in 258 trios having juvenile probands with childhood-onset DSM-IV major depressive or dysthymic disorder. BDNF markers included the (GT)n microsatellite, Val66Met and four other single-nucleotide polymorphisms (SNPs) distributed across the BDNF gene. Family-based association and evolutionary haplotype analysis methods were used. Analysis of linkage disequilibrium (LD) revealed substantial LD among all six polymorphisms. Analyses of the Val66Met polymorphism demonstrated significant overtransmission of the val allele (χ2=7.12, d.f.=1, P=0.0076). Consistent with the pattern of LD, all other SNPs showed significant biased transmission. The (GT)n microsatellite alleles also indicated a trend towards biased transmission (170 bp: Z=2.095, P=0.036). Significant haplotypes involved Val66Met and BDNF2 (P=0.0029). In this Hungarian sample, we found all five BDNF SNPs tested and a haplotype containing the BDNF Val66Met Val allele to be associated with COMD. These results provide evidence that BDNF variants affect liability to juvenile-onset mood disorders, supported by data from two independent samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ustun TB, Ayuso-Mateos JL, Chatterji S, Mathers C, Murray CJ . Global burden of depressive disorders in the year 2000. Br J Psychiatry 2004; 184: 386–392.

    Article  CAS  Google Scholar 

  2. Birmaher B, Ryan ND, Williamson DE, Brent DA, Kaufman J, Dahl RE et al. Childhood and adolescent depression: a review of the past 10 years. Part I. J Am Acad Child Adolesc Psychiatry 1996; 35: 1427–1439.

    Article  CAS  Google Scholar 

  3. Kovacs M . Depressive disorders in childhood: an impressionistic landscape. J Child Psychol Psychiatry 1997; 38: 287–298.

    Article  CAS  Google Scholar 

  4. Sullivan PF, Neale MC, Kendler KS . Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000; 157: 1552–1562.

    Article  CAS  Google Scholar 

  5. Rice F, Harold G, Thapar A . The genetic aetiology of childhood depression: a review. J Child Psychol Psychiatry 2002; 43: 65–79.

    Article  Google Scholar 

  6. Todd RD, Botteron KN . Family, genetic, and imaging studies of early-onset depression. Child Adolesc Psychiatr Clin N Am 2001; 10: 375–390.

    Article  CAS  Google Scholar 

  7. Todd RD, Neuman R, Geller B, Fox LW, Hickok J . Genetic studies of affective disorders: should we be starting with childhood onset probands? J Am Acad Child Adolesc Psychiatry 1993; 32: 1164–1171.

    Article  CAS  Google Scholar 

  8. Neuman RJ, Geller B, Rice JP, Todd RD . Increased prevalence and earlier onset of mood disorders among relatives of prepubertal vs adult probands. J Am Acad Child Adolesc Psychiatry 1997; 36: 466–473.

    Article  CAS  Google Scholar 

  9. Duman RS . Genetics of childhood disorders: XXXIX. Stem cell research, Part 3: regulation of neurogenesis by stress and antidepressant treatment. J Am Acad Child Adolesc Psychiatry 2002; 41: 745–748.

    Article  Google Scholar 

  10. Duman RS, Heninger GR, Nestler EJ . A molecular and cellular theory of depression. Arch Gen Psychiatry 1997; 54: 597–606.

    Article  CAS  Google Scholar 

  11. Hashimoto K, Shimizu E, Iyo M . Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res Brain Res Rev 2004; 45: 104–114.

    Article  CAS  Google Scholar 

  12. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW . Hippocampal atrophy in recurrent major depression. PNAS USA 1996; 93: 3908–3913.

    Article  CAS  Google Scholar 

  13. Sheline YI, Gado MH, Kraemer HC . Untreated depression and hippocampal volume loss. Am J Psychiatry 2003; 160: 1516–1518.

    Article  Google Scholar 

  14. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT . Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 50: 260–265.

    Article  CAS  Google Scholar 

  15. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM . Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 2002; 109: 143–148.

    Article  CAS  Google Scholar 

  16. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 2003; 54: 70–75.

    Article  CAS  Google Scholar 

  17. Aydemir O, Deveci A, Taneli F . The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 261–265.

    Article  CAS  Google Scholar 

  18. Detera-Wadleigh SD, Badner JA, Berrettini WH, Yoshikawa T, Goldin LR, Turner G et al. A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2. Proc Natl Acad Sci USA 1999; 96: 5604–5609.

    Article  CAS  Google Scholar 

  19. McInnes LA, Escamilla MA, Service SK, Reus VI, Leon P, Silva S et al. A complete genome screen for genes predisposing to severe bipolar disorder in two Costa Rican pedigrees. Proc Natl Acad Sci USA 1996; 93: 13060–13065.

    Article  CAS  Google Scholar 

  20. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112: 257–269.

    Article  CAS  Google Scholar 

  21. Pezawas L, Verchinski BA, Mattay VS, Callicott JH, Kolachana BS, Straub RE et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci 2004; 24: 10099–10102.

    Article  CAS  Google Scholar 

  22. Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F, Kennedy JL . The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet 2002; 71: 651–655.

    Article  CAS  Google Scholar 

  23. Sklar P, Gabriel SB, McInnis MG, Bennett P, Lim YM, Tsan G et al. Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Mol Psychiatry 2002; 7: 579–593.

    Article  CAS  Google Scholar 

  24. Hong CJ, Huo SJ, Yen FC, Tung CL, Pan GM, Tsai SJ . Association study of a brain-derived neurotrophic-factor genetic polymorphism and mood disorders, age of onset and suicidal behavior. Neuropsychobiology 2003; 48: 186–189.

    Article  CAS  Google Scholar 

  25. Kunugi H, Iijima Y, Tatsumi M, Yoshida M, Hashimoto R, Kato T et al. No association between the Val66Met polymorphism of the brain-derived neurotrophic factor gene and bipolar disorder in a Japanese population: a multicenter study. Biol Psychiatry 2004; 56: 376–378.

    Article  CAS  Google Scholar 

  26. Nakata K, Ujike H, Sakai A, Uchida N, Nomura A, Imamura T et al. Association study of the brain-derived neurotrophic factor (BDNF) gene with bipolar disorder. Neurosci Lett 2003; 337: 17–20.

    Article  CAS  Google Scholar 

  27. Neves-Pereira M, Cheung JK, Pasdar A, Zhang F, Breen G, Yates P . BDNF gene is a risk factor for schizophrenia in a Scottish population. Mol Psychiatry 2005; 10: 208–212.

    Article  CAS  Google Scholar 

  28. Oswald P, Del-Favero J, Massat I, Souery D, Claes S, van Broeckhoven E . Non-replication of the brain-derived neurotrophic factor (BDNF) association in bipolar affective disorder: a Belgian patient-control study. Am J Med Genet 2004; 129B: 34–35.

    Article  Google Scholar 

  29. Skibinska M, Hauser J, Czerski PM, Leszczynska-Rodziewicz A, Kosmowska M, Kapelski P et al. Association analysis of brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism in schizophrenia and bipolar affective disorder. World J Biol Psychiatry 2004; 5: 215–220.

    Article  Google Scholar 

  30. Lang UE, Hellweg R, Gallinat J . BDNF serum concentrations in healthy volunteers are associated with depression-related personality traits. Neuropsychopharmacology 2004; 29: 795–798.

    Article  CAS  Google Scholar 

  31. Lang UE, Hellweg R, Kalus P, Bajbouj M, Lenzen KP, Sander T et al. Association of a functional BDNF polymorphism and anxiety-related personality traits. Psychopharmacology (Berl) 2005; 26, [Epub ahead of print].

  32. Sen S, Nesse RM, Stoltenberg SF, Li S, Gleiberman L, Chakravarti A et al. A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology 2003; 28: 397–401.

    Article  CAS  Google Scholar 

  33. Tsai SJ, Hong CJ, Yu YW, Chen TJ . Association study of a brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and personality trait and intelligence in healthy young females. Neuropsychobiology 2004; 49: 13–16.

    Article  CAS  Google Scholar 

  34. Strauss J, Barr CL, George CJ, King N, Shaikh S, Devlin B et al. Association study of brain-derived neurotrophic factor in adults with a history of childhood-onset mood disorder. Am J Med Genet (Neuropsychiatr Genet) 2004; 131B: 16–19.

    Article  CAS  Google Scholar 

  35. Sherrill JT, Kovacs M . Interview schedule for children and adolescents (ISCA). J Am Acad Child Adolesc Psychiatry 2000; 39: 67–75.

    Article  CAS  Google Scholar 

  36. Lahiri DK, Nurnberger Jr JI . A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 1991; 19: 5444.

    Article  CAS  Google Scholar 

  37. Liu QR, Walther D, Drgon T, Polesskaya O, Lesnick TG, Strain KJ et al. Human brain derived neurotrophic factor (BDNF) genes, splicing patterns, and assessments of associations with substance abuse and Parkinson's Disease. Am J Med Genet B (Neuropsychiatr Genet) 2005; 134: 93–103.

    Article  Google Scholar 

  38. Proschel M, Saunders A, Roses AD, Muller CR . Dinucleotide repeat polymorphism at the human gene for the brain-derived neurotrophic factor (BDNF). Hum Mol Genet 1992; 1: 353.

    Article  CAS  Google Scholar 

  39. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  40. Rabinowitz D, Laird N . A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered 2000; 50: 211–223.

    Article  CAS  Google Scholar 

  41. Zhao JH . 2LD, GENECOUNTING and HAP: computer programs for linkage disequilibrium analysis. Bioinformatics 2004; 20: 1325–1326.

    Article  CAS  Google Scholar 

  42. Rinaldo A, Bacanu S-B, Devlin B, Sonpar V, Wasserman L, Roeder K . Characterization of multilocus linkage disequilibrium. Genet Epidemiol 2005; 28: 193–206.

    Article  Google Scholar 

  43. Seltman H, Roeder K, Devlin B . Evolutionary-based association analysis using haplotype data. Genet Epidemiol 2003; 25: 48–58.

    Article  Google Scholar 

  44. Crandall KA, Templeton AR . Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny construction. Genetics 1993; 134: 959–969.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Geller B, Badner JA, Tillman R, Christian SL, Bolhofner K, Cook Jr EH . Linkage disequilibrium of the brain-derived neurotrophic factor Val66Met polymorphism in children with a prepubertal and early adolescent bipolar disorder phenotype. Am J Psychiatry 2004; 161: 1698–1700.

    Article  Google Scholar 

  46. Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 2003; 23: 6690–6694.

    Article  CAS  Google Scholar 

  47. Seltman H, Roeder K, Devlin B . Transmission/disequilibrium test meets measured haplotype analysis: family-based association analysis guided by evolution of haplotypes. Am J Hum Genet 2001; 68: 1250–1263.

    Article  CAS  Google Scholar 

  48. Roeder K, Bacanu S-B, Sonpar V, Zhang X, Devlin B . Analysis of single-locus tests to detect gene/disease associations. Genet Epidemiol 2005; 6 [Epub ahead of print].

  49. Hall D, Dhilla A, Charalambous A, Gogos JA, Karayiorgou M . Sequence variants of the brain-derived neurotrophic factor (BDNF) gene are strongly associated with obsessive-compulsive disorder. Am J Hum Genet 2003; 73: 370–376.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Mary Smirniw for her administrative assistance. International Consortium members include István Benák, Dr Krisztina Kapornai, Viola Kothencné Osváth, Dr Edit Dombovári and Dr Emília Kaczvinszky from the Szeged University Medical Faculty Department for Child and Adolescent Psychiatry, Szeged; Dr Zsuzsa Tamás, Dr Júlia Gádoros, Dr Márta Besnyõ, Dr Judit Székely from Vadaskert Hospital, Budapest; Dr László Mayer from Margit Hospital, Csorna; and Dr Magdolna Gácser from Pándy Kálmán Hospital, Department for Child Psychiatry, Gyula. This work was supported by the Canadian Psychiatric Research Foundation (JS) and the AFSP (JS) and the NIMH Program Project P01 MH56193-08 (JLK, CLB, MK).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J Strauss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strauss, J., Barr, C., George, C. et al. Brain-derived neurotrophic factor variants are associated with childhood-onset mood disorder: confirmation in a Hungarian sample. Mol Psychiatry 10, 861–867 (2005). https://doi.org/10.1038/sj.mp.4001685

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001685

Keywords

This article is cited by

Search

Quick links