Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Association between COMT (Val158Met) functional polymorphism and early onset in patients with major depressive disorder in a European multicenter genetic association study

Abstract

The available data from preclinical and pharmacological studies on the role of the C-O-methyl transferase (COMT) support the hypothesis that abnormal catecholamine transmission has been implicated in the pathogenesis of mood disorders (MD). We examined the relationship of a common functional polymorphism (Val108/158Met) in the COMT gene, which accounts for four-fold variation in enzyme activity, with ‘early-onset’ (EO) forms (less than or equal to 25 years) of MD, including patients with major depressive disorder (EO-MDD) and bipolar patients (EO-BPD), in a European multicenter case–control sample. Our sample includes 378 MDD (120 EO-MDD), 506 BPD (222 EO-BPD) and 628 controls. An association was found between the high-activity COMT Val allele, particularly the COMT Val/Val genotype and EO-MDD. These findings suggest that the COMT Val/Val genotype may be involved in EO-MDD or may be in linkage disequilibrium with a different causative polymorphism in the vicinity. The COMT gene may have complex and pleiotropic effects on susceptibility and symptomatology of neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Risch N, Merikangas K . The future of genetic studies of complex human diseases. Science 1996; 273: 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  2. Mendlewicz J . Juvenile and late onset forms of depressive disorder: genetic and biological characterization of bipolar and unipolar illness-a review. Maturitas 1979; 1: 229–234.

    Article  CAS  PubMed  Google Scholar 

  3. Strober M, Morrell W, Burroughs J, Lampert C, Danforth H, Freeman R . A family study of bipolar I disorder in adolescence: early onset of symptoms linked to increased familial loading and lithium resistance. J Affect Disord 1988; 15: 255–268.

    Article  CAS  PubMed  Google Scholar 

  4. Leboyer M, Bellivier F, McKeon P, Albus M, Borrman M, Perez-Diaz F et al. Age at onset and gender resemblance in bipolar siblings. Psychiatry Res 1998; 81: 125–131.

    Article  CAS  PubMed  Google Scholar 

  5. Grigoroiu-Serbanescu M, Martinez M, Nöthen MM, Grimberg M, Sima D, Propping P et al. Different familial transmission patterns in bipolar I disorder with onset before and after age 25. Am J Med Genet 2001; 105: 765–773.

    Article  CAS  PubMed  Google Scholar 

  6. Grigoroiu-Serbanescu M, Wickramaratne PJ, Hodge SE, Milea S, Mihailescu R . Genetic anticipation and imprinting in bipolar I illness. Br J Psychiatry 1997; 170: 162–166.

    Article  CAS  PubMed  Google Scholar 

  7. Lindblad K, Nylander PO, De bruyn A, Sourey D, Zander C, Engstrom C et al. Detection of expanded CAG repeats in bipolar affective disorder using the repeat expansion detection (RED) method. Neurobiol Dis 1995; 2: 55–62.

    Article  CAS  PubMed  Google Scholar 

  8. Lindblad K, Nylander PO, Zander C, Yuan QP, Stahle L, Engstrom C et al. Two commonly expanded CAG/ CTG repeat loci: involvement in affective disorders? Mol Psychiatry 1998; 3: 405–410.

    Article  CAS  PubMed  Google Scholar 

  9. Mendlewicz J, Lindbald K, Souery D, Mahieu B, Nylander PO, De Bruyn A et al. Expanded trinucleotide CAG repeats in families with bipolar affective disorder. Biol Psychiatry 1997; 42: 1115–1122.

    Article  CAS  PubMed  Google Scholar 

  10. Pericak-Vance MA, Bebout JL, Gaskell Jr PC, Yamaoka LH, Hung WY, Alberts MJ et al. Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am J Hum Genet 1991; 48: 1034–1050.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Papolos DF, Faedda GL, Veit S, Goldberg R, Morrow B, Kucherlapati R et al. Bipolar spectrum disorders in patients diagnosed with velo-cardio-facial syndrome: does a hemizygous deletion of chromosome 22q11 result in bipolar affective disorder? Am J Psychiatry 1996; 153: 1541–1547.

    Article  CAS  PubMed  Google Scholar 

  12. Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, Julkunen I et al. Kinetics of human soluble and membrane-bound catechol-O methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 1995; 34: 4202–4210.

    Article  CAS  PubMed  Google Scholar 

  13. Bertocci B, Miggiano V, Da Prada M, Dembic Z, Lahm HW, Malherbe P . Human catechol-O-methyltransferase, cloning and expression of the membrane-associated form. Proc Natl Acad Sci USA 1991; 88: 1416–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lundstrom K, Salminen M, Jalanko A, Savolainen R, Ulmanen I . Cloning and characterization of human placental catechol-O-methyltransferase cDNA. DNA Cell Biol 1991; 10: 181–189.

    Article  CAS  PubMed  Google Scholar 

  15. Tenhunen J, Salminen M, Lundstrom K, Kiviluoto T, Savolainen R, Ulmanen I . Genomic organization of the human catechol-O-methyltransferase gene and its expression from two distinct promoters. Eur J Biochem 1994; 223: 1049–1059.

    Article  CAS  PubMed  Google Scholar 

  16. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM . Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996; 6: 243–250.

    Article  CAS  PubMed  Google Scholar 

  17. Aksoy S, Klener J, Weinshilboum RM . Catechol O-methyltransferase pharmacogenetics: photoaffinity labelling and western blot analysis of human liver samples. Pharmacogenetics 1993; 3: 116–122.

    Article  CAS  PubMed  Google Scholar 

  18. Fahndrich E, Coper H, Christ W, Helmchen H, Muller-Oerlinghausen B, Pietzcker A . Erythrocyte COMT-activity in patients with affective disorders. Acta Psychiatr Scand 1980; 61: 427–437.

    Article  CAS  PubMed  Google Scholar 

  19. Guldberg HC, Marsden CA . Catechol-O-methyl transferase: pharmacological aspects and physiological role. Pharmacol Rev 1975; 27: 135–206.

    CAS  PubMed  Google Scholar 

  20. Papolos DF, Veit S, Faedda GL, Saito T, Lachman HM . Ultra-ultra rapid cycling bipolar disorder is associated with the low activity catecholamine-O-methytransferase allele. Mol Psychiatry 1998; 3: 346–349.

    Article  CAS  PubMed  Google Scholar 

  21. Ohara K, Nagai M, Suzuki Y, Ohara K . Low activity allele of catechol-o-methyltransferase gene and Japanese unipolar depression. Neuroreport 1998; 9: 1305–1308.

    Article  CAS  PubMed  Google Scholar 

  22. Li T, Vallada H, Curtis D, Arranz M, Xu K, Cai G et al. Catechol-O-methyltransferase Val158Met polymorphism: frequency analysis in Han Chinese subjects and allelic association of the low activity allele with bipolar affective disorder. Pharmacogenetics 1997; 7: 349–353.

    Article  CAS  PubMed  Google Scholar 

  23. Mynett-Johnson LA, Murphy VE, Claffey E, Shields DC, McKeon P . Preliminary evidence of an association between bipolar disorder in females and the catechol-O-methyltransferase gene. Psychiatr Genet 1998; 8: 221–225.

    Article  CAS  PubMed  Google Scholar 

  24. Rotondo A, Mazzanti C, Dell'Osso L, Rucci P, Sullivan P, Bouanani S et al. Catechol o-methyltransferase, serotonin transporter, and tryptophan hydroxylase gene polymorphisms in bipolar disorder patients with and without comorbid panic disorder. Am J Psychiatry 2002; 159: 23–29.

    Article  PubMed  Google Scholar 

  25. Kirov G, Murphy KC, Arranz MJ, Jones I, McCandles F, Kunugi H et al. Low activity allele of catechol-O-methyltransferase gene associated with rapid cycling bipolar disorder. Mol Psychiatry 1998; 3: 342–345.

    Article  CAS  PubMed  Google Scholar 

  26. Schizophrenia Collaborative Linkage Group for Chromosome 22. A transmission disequilibrium and linkage analysis of D22S278 marker alleles in 574 families: further support for a susceptibility locus for schizophrenia at 22q12. Schizophr Res 1998; 32: 115–121.

  27. Lachman HM, Kelsoe JR, Remick RA, Sadovnick AD, Rapaport MH, Lin M et al. Linkage studies suggest a possible locus for bipolar disorder near the velo-cardio-facial syndrome region on chromosome 22. Am J Med Genet 1997; 74: 121–128.

    Article  CAS  PubMed  Google Scholar 

  28. Kelsoe JR, Spence MA, Loetscher E, Foguet M, Sadovnick AD, Remick RA et al. A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22. Proc Natl Acad Sci USA 2001; 98: 585–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Souery D, Lipp O, Serretti A, Mahieu B, Rivelli SK, Cavallini C et al. European Collaborative Project on Affective Disorders, interactions between genetic and psychosocial vulnerability factors. Psychiatr Genet 1998; 8: 197–205.

    Article  CAS  PubMed  Google Scholar 

  30. Endicott J, Spitzer RL . A diagnostic interview: the schedule for affective disorders and schizophrenia. Arch Gen Psychiatry 1978; 35: 837–862.

    Article  CAS  PubMed  Google Scholar 

  31. Wing JK, Babor T, Brugha T, Burke J, Cooper JE, Giel R et al. SCAN: schedules for clinical assessment in neuropsychiatry. Arch Gen Psychiatry 1990; 47: 589–593.

    Article  CAS  PubMed  Google Scholar 

  32. Farmer A, Cosyns P, Leboyer M, Maier W, Mors O, Sargeant M et al. A SCAN–SADS comparison study of psychotic subjects and their first degree relatives. Eur Arch Psychiatry Clin Neurosci 1993; 242: 352–357.

    Article  CAS  PubMed  Google Scholar 

  33. Bellivier F, Golmard JL, Rietschel M, Schulze TG, Malafosse A, Preisig M et al. Age at onset in bipolar I affective disorder: further evidence for three subgroups. Am J Psychiatry 2003; 160: 999–1001.

    Article  PubMed  Google Scholar 

  34. Andreasen NC, Endicott J, Spitzer RL, Winokur G . The family history method using diagnostic criteria. Arch Gen Psychiatry 1977; 34: 1229–1235.

    Article  CAS  PubMed  Google Scholar 

  35. Lahiri DK, Nurnberger JI . A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 1991; 19: 5444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Raymond M, Rousset F . Genepop (ver1.2), a population genetic software for exact test and ecuniscism. J Hered 1995; 95: 248–249.

    Article  Google Scholar 

  37. Mantel N, Haenszel W . Statistical aspects of the analysis if data from retrospective studies of disease. J Natl Cancer Inst 1959; 22: 719–748.

    CAS  PubMed  Google Scholar 

  38. Breslow NE, Day NE . Statistical Methods in Cancer Research. Volume 1 – The analysis of case–control studies. IARC Scientific Publication No. 32: Lyon, 1980.

    Google Scholar 

  39. Bellivier F, Laplanche JL, Schurhoff F, Feingold J, Feline A, Jouvent R et al. Apolipoprotein E gene polymorphism in early and late onset bipolar patients. Neurosci Lett 1997; 233: 45–48.

    Article  CAS  PubMed  Google Scholar 

  40. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98: 6917–6922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Badner JA, Gershon ES . Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405–411.

    Article  CAS  PubMed  Google Scholar 

  42. Eley TC, Tahir E, Angleitner A, Harriss K, McClay J, Plomin R et al. Association analysis of MAOA and COMT with neuroticism assessed by peers. Am J Med Genet 2003; 120: 90–96.

    Article  Google Scholar 

  43. Glatt SJ, Faraone SV, Tsuang MT . Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case–control and family-based studies. Am J Psychiatry 2003; 160: 469–476.

    Article  PubMed  Google Scholar 

  44. Rujescu D, Giegling I, Gietl A, Hartmann AM, Moller HJ . A functional single nucleotide polymorphism (V158M) in the COMT gene is associated with aggressive personality traits. Biol Psychiatry 2003; 54: 34–39.

    Article  CAS  PubMed  Google Scholar 

  45. Kunugi H, Vallada HP, Hoda F, Kirov G, Gill M, Aitchison KJ et al. No evidence for an association of affective disorders with high- or low-activity allele of catechol-o-methyltransferase gene. Biol Psychiatry 1997; 42: 282–285.

    Article  CAS  PubMed  Google Scholar 

  46. Frisch A, Postilnick D, Rockah R, Michaelovsky E, Postilnick S, Birman E et al. Association of unipolar major depressive disorder with genes of the serotonergic and dopaminergic pathways. Mol Psychiatry 1999; 4: 389–392.

    Article  CAS  PubMed  Google Scholar 

  47. Russ MJ, Lachman HM, Kashdan T, Saito T, Bajmakovic-Kacila S . Analysis of catechol-O-methyltransferase and 5-hydroxytryptamine transporter polymorphisms in patients at risk for suicide. Psychiatry Res 2000; 93: 73–78.

    Article  CAS  PubMed  Google Scholar 

  48. Cusin C, Serretti A, Lattuada E, Lilli R, Lorenzi C, Smeraldi E . Association study of MAO-A, COMT, 5-HT2A, DRD2, and DRD4 polymorphisms with illness time course in mood disorders. Am J Med Genet 2002; 114: 380–390.

    Article  PubMed  Google Scholar 

  49. Gutierrez B, Bertranpetit J, Guillamat R, Valles V, Arranz MJ, Kerwin R et al. Association analysis of the catechol-O-methyltransferase gene and bipolar affective disorder. Am J Psychiatry 1997; 154: 113–115.

    Article  CAS  PubMed  Google Scholar 

  50. Lachman HM, Kelsoe J, Moreno L, Katz S, Papolos DF . Lack of association of catechol-O-methyltransferase (COMT) functional polymorphism in bipolar affective disorder. Psychiatr Genet 1997; 7: 13–17.

    Article  CAS  PubMed  Google Scholar 

  51. Biomed European Bipolar Collaborative Group. No association between bipolar disorder and alleles at a functional polymorphism in the COMT gene. Br J Psychiatry 1997; 170: 526–528.

  52. Geller B, Cook Jr EH . Ultradian rapid cycling in prepubertal and early adolescent bipolarity is not in transmission disequilibrium with val/met COMT alleles. Biol Psychiatry 2000; 47: 605–609.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Association for Mental Health Research (AESM), the European Community Biomed Grant (Grant No CT 92-1217), the National Fund for Scientific Research (NFSR), the Fund for Scientific Research Flanders (FWO) and a concerted action grant of the Special Research Fund of the University of Antwerp, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Massat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massat, I., Souery, D., Del-Favero, J. et al. Association between COMT (Val158Met) functional polymorphism and early onset in patients with major depressive disorder in a European multicenter genetic association study. Mol Psychiatry 10, 598–605 (2005). https://doi.org/10.1038/sj.mp.4001615

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001615

Keywords

This article is cited by

Search

Quick links