Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families

Abstract

The goal of this study was to identify susceptibility loci shared by schizophrenia (SZ) and bipolar disorder (BP), or specific to each. To this end, we performed a dense genome scan in a first sample of 21 multigenerational families of Eastern Quebec affected by SZ, BP or both (N=480 family members). This probably constitutes the first genome scan of SZ and BP that used the same ascertainment, statistical and molecular methods for the concurrent study of the two disorders. We genotyped 607 microsatellite markers of which 350 were spaced by 10 cM and 257 others were follow-up markers in positive regions at the 10 cM scan. Lander and Kruglyak thresholds were conservatively adjusted for multiple testings. We maximized the lod scores (mod score) over eight combinations (2 phenotype severity levels × 2 models of transmission × 2 analyses, affected/unaffected vs affected-only). We observed five genomewide significant linkages with mod score >4.0: three for BP (15q11.1, 16p12.3, 18q12–q21) and two for the shared phenotype, that is, the common locus (CL) phenotype (15q26,18q12–q21). Nine mod scores exceeded the suggestive threshold of 2.6: three for BP (3q21, 10p13, 12q23), three for SZ (6p22, 13q13, 18q21) and three for the CL phenotype (2q12.3, 13q14, 16p13). Mod scores >1.9 might represent confirmatory linkages of formerly reported genomewide significant findings such as our finding in 6p22.3 for SZ. Several regions appeared to be shared by SZ and BP. One linkage signal (15q26) appeared novel, whereas others overlapped formerly reported susceptibility regions. Despite the methodological limitations we raised, our data support the following trends: (i) results from several genome scans of SZ and BP in different populations tend to converge in specific genomic regions and (ii) some of these susceptibility regions may be shared by SZ and BP, whereas others may be specific to each. The present results support the relevance of investigating concurrently SZ and BP within the same study and have implications for the modelling of genetic effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Gottesman II . Schizophrenia Genesis. WH Freeman and Company: New York, 1992.

    Google Scholar 

  2. Cannon TD, Kaprio J, Lönnqvist J, Huttunen M, Koshkenvuo M . The genetic epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch Gen Psychiatry 1998; 55: 67–74.

    PubMed  CAS  Google Scholar 

  3. Cardno AG, Marshall EJ, Coid B, Macdonald A, Ribchester TR, Davies NJ et al. Heritability estimates for psychotic disorders. The maudsley twin psychosis series. Arch Gen Psychiatry 1999; 56: 162–168.

    PubMed  CAS  Google Scholar 

  4. Kendler KS, Diehl SR . The genetics of schizophrenia: a current, genetic–epidemiologic perspective. Schizophrenia Bull 1993; 19: 261–285.

    CAS  Google Scholar 

  5. Owen MJ, Cardno AG, O'Donovan MC . Psychiatric genetics: back to the future. Mol Psychiatry 2000; 5: 22–31.

    PubMed  CAS  Google Scholar 

  6. Maziade M, Palmour R, Phaneuf D, Mérette C, Roy M-A . Schizophrenia and bipolar disorder: linkage on chromosomes 5 and 11—a cogent start with false expectations. In: DN Cooper NTE (ed) Encyclopedia of the Human Genome. Nature Publishing Group: London, 2003 pp 226.

    Google Scholar 

  7. Riley BP, McGuffin P . Linkage and associated studies of schizophrenia. Am J Med Genet (Semin Med Genet) 2000; 97: 23–44.

    CAS  Google Scholar 

  8. Baron M . Genetics of schizophrenia and the new millennium: progress and pitfalls. Am J Hum Genet 2001; 68: 299–312.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Pulver AE . Search for schizophrenia susceptibility genes. Biol Psychiatry 2000; 47: 221–230.

    PubMed  CAS  Google Scholar 

  10. Sklar P . Linkage analysis in psychiatric disorders: the emerging picture. Annu Rev Genomics Hum Genet 2002; 3: 371–413.

    PubMed  CAS  Google Scholar 

  11. Berrettini WH . Are schizophrenic and bipolar disorders related? A review of family and molecular studies. Biol Psychiatry 2000; 48: 531–538.

    PubMed  CAS  Google Scholar 

  12. Craddock N, Jones I . Genetics of bipolar disorder. J Med Genet 1999; 36: 585–594.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Brzustowicz LM, Hodgkinson KA, Chow EWC, Honer WG, Bassett AS . Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21–q22. Science 2000; 288: 678–682.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Lindholm E, Ekholm B, Shaw S, Jalonen P, Johansson G, Pettersson U et al. A schizophrenia-susceptibility locus at 6q25, in one of the world's largest reported pedigrees. Am J Hum Genet 2001; 69: 96–105.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Maziade M, Fournier A, Phaneuf D, Cliche D, Fournier J-P, Roy M-A et al. Chromosome 1q12–q22 linkage results in Eastern Québec families affected by schizophrenia. Am J Med Genet (Neuropsychiatric Genet) 2002; 114: 51–55.

    Google Scholar 

  16. Blouin J-L, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    PubMed  CAS  Google Scholar 

  17. Faraone SV, Matise T, Svrakic D, Pepple J, Malaspina D, Suarez B et al. Genome scan of European-American schizophrenia pedigrees: results of the NIMH genetics initiative and millennium consortium. Am J Med Genet (Neuropsychiatric Genet) 1998; 81: 290–295.

    CAS  Google Scholar 

  18. Hovatta I, Varilo T, Suvisaari J, Terwilliger J, Ollikainen V, Arajärvi R et al. A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation suggesting multiple susceptibility loci. Am J Hum Genet 1999; 65: 1114–1124.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Kaufmann CA, Suarez B, Malaspina D, Pepple J, Svrakic D, Markel PD et al. NIMH genetics initiative millennium schizophrenia consortium: linkage analysis of African-American pedigrees. Am J Med Genet (Neuropsychiatric Genet) 1998; 81: 282–289.

    CAS  Google Scholar 

  20. Levinson DF, Mahtani MM, Nancarrow DJ, Brown DM, Kruglyak L, Kirby A et al. Genome scan of schizophrenia. Am J Psychiatry 1998; 155: 741–750.

    PubMed  CAS  Google Scholar 

  21. Schwab SF, Hallmayer J, Albus M, Lerer B, Eckstein GN, Borrmann M et al. A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosomes 10p and 6. Mol Psychiatry 2000; 5: 638–649.

    PubMed  CAS  Google Scholar 

  22. Williams NM, Rees MI, Holmans P, Norton N, Cardno AG, Jones LA et al. A two-stage genome scan for schizophrenia susceptibility genes in 196 affected sibling pairs. Hum Mol Genet 1999; 8: 1729–1739.

    PubMed  CAS  Google Scholar 

  23. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, Part II: schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Gurling HM, Kalsi G, Brynjoltson J, Sigmundsson T, Sherrington R, Mankoo BS et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21–22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3–24 and 20q12.1–11.23. Am J Hum Genet 2001; 68: 661–673.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Shaw SH, Kelly M, Smith AB, Shields G, Hopkins PJ, Loftus J et al. A genome-wide search for schizophrenia susceptibility genes. Am J Med Genet (Neuropsychiatric Genet) 1998; 81: 364–376.

    CAS  Google Scholar 

  26. Maziade M, Roy MA, Fournier J-P, Cliche D, Mérette C, Caron C et al. Reliability of best-estimate diagnosis in genetic linkage studies of major psychoses: results from the Québec pedigree studies. Am J Psychiatry 1992; 149: 1674–1686.

    PubMed  CAS  Google Scholar 

  27. Maziade M, Roy M-A, Martinez M, Cliche D, Fournier J-P, Garneau Y et al. Negative, psychoticism, and the disorganized dimensions in patients with familial schizophrenia or bipolar disorder: continuity and discontinuity between the major psychoses. Am J Psychiatry 1995; 152: 1458–1463.

    PubMed  CAS  Google Scholar 

  28. Maier W, Lichtermann D, Minges J, Hallmayer J, Heun R, Benkert O et al. Continuity and discontinuity of affective disorders and schizophrenia: results of a controlled family study. Arch Gen Pyschiatry 1993; 50: 871–883.

    CAS  Google Scholar 

  29. Taylor MA . Are schizophrenia and affective disorder related? A selective literature review. Am J Psychiatry 1992; 149: 22–32.

    PubMed  CAS  Google Scholar 

  30. Murray RM, O'Callaghan E, Castle DJ, Lewis SW . A neurodevelopmental approach to the classification of schizophrenia. Schizophrenia Bull 1992; 18: 319–331.

    CAS  Google Scholar 

  31. Roy M-A, Lanctôt G, Mérette C, Cliche D, Fournier J-P, Boutin P et al. Clinical and methodological factors related to reliability of the best-estimate diagnostic procedure. Am J Psychiatry 1997; 154: 1726–1733.

    PubMed  CAS  Google Scholar 

  32. Toomey R, Faraone SV, Simpson JC, Tsuang MT . Negative, positive and disorganized symptom dimensions in schizophrenia, major depression and bipolar disorder. J Nervous Mental Dis 1998; 186: 470–476.

    CAS  Google Scholar 

  33. Peralta V, Cuesta MJ, Farre C . Factor structure of symptoms in functional psychoses. Soc Biol Psychiatry 1997; 42: 806–815.

    CAS  Google Scholar 

  34. Serretti A, Macciardi F, Smeraldi E . Identification of symptomatologic patterns common to major psychoses: proposal for a phenotype definition. Am J Med Genet (Neuropsychiatric Genet) 1996; 67: 393–400.

    CAS  Google Scholar 

  35. Ratakonda S, Gorman JM, Yale SA, Amador XF . Characterization of psychotic conditions: use of the domain of psychopathology model. Arch Gen Psychiatry 1998; 55: 75–81.

    PubMed  CAS  Google Scholar 

  36. Maziade M, Roy M-A, Rouillard E, Bissonnette L, Fournier J-P, Roy A et al. A search for specific and common susceptibility loci for schizophrenia and bipolar disorder: a linkage study of 13 target chromosomes. Mol Psychiatry 2001; 6: 684–693.

    PubMed  CAS  Google Scholar 

  37. Berrettini W . Evidence for shared susceptibility in bipolar disorder and schizophrenia. Am J Med Genet (Semin Med Genet) 2003; 123C: 59–64.

    Google Scholar 

  38. Detera-Wadleigh S, Badner JA, Berrettini WH, Yoshikawa T, Goldin LR, Turner G et al. A high-density genome scan detects evidence for a bipolar disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2. Proc Natl Acad Sci USA 1999; 96: 5604–5609.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Foroud T, Castelluccio PF, Koller DL, Edenberg HJ, Miller M, Bowman E et al. Suggestive evidence of a locus on chromosome 10p using the NIMH genetics initiative bipolar affective disorder pedigrees. Am J Med Genet (Neuropsychiatric Genet) 2000; 96: 18–23.

    CAS  Google Scholar 

  40. Schwab SG, Hallmayer J, Albus M, Lerer B, Hanses C, Kanyas K et al. Further evidence for a susceptibility locus on chromosome 10p14–p11 in 72 families with schizophrenia by nonparametric linkage analysis. Am J Med Genet (Neuropsychiatric Genet) 1998; 81: 302–307.

    CAS  Google Scholar 

  41. Kelsoe JR, Spence MA, Loetscher E, Foguet M, Sadovnick AD, Remick RA et al. A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22. Proc Natl Acad Sci USA 2001; 98: 585–590.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Bailer U, Leisch F, Meszaros K, Lenzinger E, Willinger U, Strobl R et al. Genome scan for susceptibility loci for schizophrenia and bipolar disorder. Biol Psychiatry 2002; 52: 40–52.

    PubMed  CAS  Google Scholar 

  43. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    PubMed  CAS  Google Scholar 

  44. Chagnon YC, Borecki IB, Pérusse L, Roy S, Lacaille M, Chagnon M et al. Genome-wide search for genes related to the fat-free body mass in the Québec family study. Metabolism 2000; 49: 203–207.

    PubMed  CAS  Google Scholar 

  45. O'Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Abreu PC, Greenberg DA, Hodge SE . Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases. Am J Hum Genet 1999; 65: 847–857.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Vieland VJ, Greenberg DA, Hodge SE . Adequacy of single-locus approximations for linkage analyses of oligogenic traits: extension to multigenerational pedigree structures. Hum Hered 1993; 43: 329–336.

    PubMed  CAS  Google Scholar 

  48. Schaffer AA . Faster linkage analysis computations for pedigrees with loops or unused alleles. Hum Hered 1996; 46: 226–235.

    PubMed  CAS  Google Scholar 

  49. Ott J . Computer-simulation methods in human linkage analysis. Proc Natl Acad Sci USA 1989; 86: 4175–4178.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Hodge SE, Elston RC . Lods, wrods and mods : the interpretation of lod scores calculated under different models. Genet Epidemiol 1994; 11: 329–342.

    PubMed  CAS  Google Scholar 

  51. Hodge SE, Abreu PC, Greenberg DA . Magnitude of type I error when single-locus linkage analysis is maximized over models: a simulation study. Am J Hum Genet 1997; 60: 217–227.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Ott J . Analysis of Human Genetic Linkage. Johns Hopkins University Press: Baltimore and London, 1991.

    Google Scholar 

  53. Vieland VJ . The replication requirement. Nat Genet 2001; 29: 244–245.

    PubMed  CAS  Google Scholar 

  54. Roberts SB, MacLean CJ, Neale MC, Eaves LJ, Kendler KS . Replication of linkage studies of complex traits: an examination of variation in location estimates. Am J Hum Genet 1999; 65: 876–884.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 1997; 94: 587–592.

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Turecki G, Grof P, Grof E, D'Souza V, Lebuis L, Marineau C et al. Mapping susceptibility genes for bipolar disorder: a pharmacogenetic approach based on excellent response to lithium. Mol Psychiatry 2001; 6: 570–578.

    PubMed  CAS  Google Scholar 

  57. Badner JA, Gershon ES . Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405–411.

    PubMed  CAS  Google Scholar 

  58. Segurado R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger Jr JI et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, Part III: bipolar disorder. Am J Hum Genet 2003; 73: 49–62.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Straub RE, MacLean CJ, O'Neil AF, Burke J, Murphy B, Duke F et al. A potential vulnerability locus for schizophrenia on chromosome 6p24–22: evidence for genetic heterogeneity. Nat Genet 1995; 11: 287–293.

    PubMed  CAS  Google Scholar 

  60. Turecki G, Rouleau GA, Joober R, Mari J, Morgan K . Schizophrenia and chromosome 6p. Am J Med Genet (Neuropsychiatric Genet) 1997; 74: 195–198.

    CAS  Google Scholar 

  61. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog on the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M et al. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 2003; 72: 185–190.

    PubMed  CAS  Google Scholar 

  63. Ginns EI, Ott J, Egeland JA, Allen CR, Fann CSJ, Pauls DL et al. A genome-wide search for chromosomal loci linked to bipolar affective disorder in the Old Order Amish. Nat Genet 1996; 12: 431–435.

    PubMed  CAS  Google Scholar 

  64. Craddock N, Owen M . Chromosomal aberrations and bipolar affective disorder. Br J Psychiatry 1994; 164: 507–512.

    PubMed  CAS  Google Scholar 

  65. Badenhop RF, Moses MJ, Scimone A, Mitchell PB, Ewen KR, Rosso A et al. A genome screen of a large bipolar affective disorder pedigree supports evidence for a susceptibility locus on chromosome 13q. Mol Psychiatry 2001; 6: 396–403.

    PubMed  CAS  Google Scholar 

  66. Ophoff RA, Escamilla MA, Service SK, Spesny M, Meshi DB, Poon W et al. Genomewide linkage disequilibrium mapping of severe bipolar disorder in a population isolate. Am J Hum Genet 2002; 71: 565–574.

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Aita VM, Liu J, Knowles JA, Terwilliger JD, Baltazar R, Grunn A et al. A comprehensive linkage analysis of chromosome 21q22 supports prior evidence for a putative bipolar affective disorder locus. Am J Hum Genet 1999; 64: 210–217.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Detera-Wadleigh SD, Badner JA, Goldin LR, Berrettini WH, Sanders AR, Rollins DY et al. Affected-sib-pair analyses reveal support of prior evidence for a susceptibility locus for bipolar disorder on 21q. Am J Hum Genet 1996; 58: 1279–1285.

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Liu J, Juo SH, Dewan A, Grunn A, Tong X, Brito M et al. Evidence for a putative bipolar disorder locus on 2p13–16 and other potential loci on 4q31, 7q34, 8q13, 9q31, 10q21–24, 13q32, 14q21 and 17q11–12. Mol Psychiatry 2003; 8: 333–342.

    PubMed  CAS  Google Scholar 

  70. McInnis MG, Lan TH, Willour VL, McMahon FJ, Simpson SG, Addington AM et al. Genome-wide scan of bipolar disorder in 65 pedigrees: supportive evidence for linkage at 8q24, 18q22, 4q32, 2p12, and 13q12. Mol Psychiatry 2003; 8: 288–298.

    PubMed  CAS  Google Scholar 

  71. Levinson DF, Coon H, Chow LY, Deckert J, Karayiorgou M, Kelsoe J et al. Chromosome 22 workshop. Psychiatric Genet 1998; 8: 115–120.

    CAS  Google Scholar 

  72. Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen JA et al. Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet 2001; 10: 3037–3048.

    CAS  PubMed  Google Scholar 

  73. Moises HW, Yang L, Kristbjarnarson H, Wiese C, Byerley W, Macciardi F et al. An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat Genet 1995; 11: 321–324.

    PubMed  CAS  Google Scholar 

  74. Kendler KS, MacLean CJ, O'Neill A, Burke J, Murphy B, Duke F et al. Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish study of high-density schizophrenia families. Am J Psychiatry 1996; 153: 1534–1540.

    PubMed  CAS  Google Scholar 

  75. Brzustowicz LM, Honer WG, Chow EWC, Little D, Hogan J, Hodgkinson K et al. Linkage of familial schizophrenia to chromosome 13q32. Am J Hum Genet 1999; 65: 1096–1103.

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Pulver AE, Mulle J, Nestadt G, Swartz KL, Blouin J-L, Dombroski B et al. Genetic heterogeneity in schizophrenia: stratification of genome scan data using co-segregating related phenotypes. Mol Psychiatry 2000; 5: 650–653.

    PubMed  CAS  Google Scholar 

  77. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmund T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Med Genet 2002; 71: 877–892.

    Google Scholar 

  78. Straub RE, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C et al. Genome-wide scans of three independent sets of 90 Irish multiplex schizophrenia families and follow-up of selected regions in all families provides evidence for multiple susceptibility genes. Mol Psychiatry 2002; 7: 542–559.

    PubMed  CAS  Google Scholar 

  79. Rice JP, Goate A, Williams JT, Bierut L, Dorr D, Wu W et al. Initial genome scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 1, 6, 8, 10, and 12. Am J Med Genet (Neuropsychiatric Genet) 1997; 74: 247–253.

    CAS  Google Scholar 

  80. Morissette J, Villeneuve A, Bordeleau L, Rochette D, Laberge C, Gagné B et al. Genome-wide search for linkage of bipolar affective disorders in a very large pedigree derived from a homogeneous population in Quebec points to a locus of major effect on chromosome 12q23–q24. Am J Med Genet (Neuropsychiatric Genet) 1999; 88: 567–587.

    CAS  Google Scholar 

  81. Ewald H, Degn B, Mors O, Kruse TA . Significant linkage between bipolar affective disorder and chromosome 12q24. Psychiatric Genet 1998; 8: 131–140.

    CAS  Google Scholar 

  82. Stöber G, Saar K, Rüschendorf F, Meyer J, Nürnberg G, Jatzke S et al. Splitting schizophrenia: periodic catatonia-susceptibility locus on chromosome 15q15. Am J Hum Genet 2000; 67: 1201–1207.

    PubMed  PubMed Central  Google Scholar 

  83. Ewald H, Flint T, Kruse TA, Mors O . A genome-wide scan shows significant linkage between bipolar disorder and chromosome 12q24.3 and suggestive linkage to chromosomes 1p22–21, 4p16, 6q14–22, 10q26 and 16p13.3. Mol Psychiatry 2002; 7: 734–744.

    PubMed  CAS  Google Scholar 

  84. Dick DM, Foroud T, Edenberg HJ, Miller M, Bowman E, Rau NL et al. Apparent replication of suggestive linkage on chromosome 16 in the NIMH genetics initiative bipolar pedigrees. Am J Med Genet (Neuropsychiatric Genet) 2002; 114: 407–412.

    Google Scholar 

  85. Ekholm JM, Kieseppä T, Hiekkalinna T, Partonen T, Paunio T, Perola M et al. Evidence of susceptibility loci on 4q32 and 16p12 for bipolar disorder. Hum Mol Genet 2003; 12: 1907–1915.

    PubMed  CAS  Google Scholar 

  86. Berrettini W . Linkage of bipolar disorder to chromosome 18 DNA markers. Mol Psychiatry 1997; 2: 391–392.

    PubMed  CAS  Google Scholar 

  87. Schwab SG, Hallmayer J, Lerer B, Albus M, Borrmann M, Hönig S et al. Support for a chromosome 18p locus conferring susceptibility to functional psychoses in families with schizophrenia, by association and linkage analysis. Am J Hum Genet 1998; 63: 1139–1152.

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Stine OC, Xu J, Koskela R, McMahon FJ, Gschwend M, Friddle C et al. Evidence for linkage of bipolar disorder to chromosome 18 with a parent-of-origin effect. Am J Hum Genet 1995; 57: 1384–1394.

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Schulze TG, Chen Y-S, Badner JA, McInnis MG, DePaulo Jr JR, McMahon FJ . Additional, physically ordered markers increase linkage signal for bipolar disorder on chromosome 18q22. Biol Psychiatry 2003; 53: 239–243.

    PubMed  CAS  Google Scholar 

  90. Freimer NB, Reus VI, Escamilla MA, McInnes LA, Spesny M, Leon P et al. Genetic mapping using haplotype, association and linkage methods suggests a locus for severe bipolar disorder (BPI) at 18q22–q23. Nat Genet 1996; 12: 436–441.

    PubMed  CAS  Google Scholar 

  91. Straub RE, Lehner T, Luo Y, Loth JE, Shao W, Sharpe L et al. A possible vulnerability locus for bipolar affective disorder on chromosome 21q22.3. Nat Genet 1994; 8: 291–296.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We dedicate this research to the memory of the late Professor Theodore Reich. This research was supported in part by a group grant (#MGC-14501) from the Canadian Institutes of Health Research (CIHR) and another individual CIHR grant (# MT-12854), and also by a Canada Research Chair (# 950-200810) in psychiatric genetics of which Maziade is the Chairholder. Roy and Mérette are each supported by a scholarship from the Fonds de la recherche en santé du Québec (FRSQ). We thank the families for their participation. We are also grateful to our professional research assistants: Louise Bélanger, Suzanne Belzile, Céline Blackburn, Pierrette Boutin, Liliane Charron, Jeannine Landry, Claudie Poirier, Linda René, Véronique Tremblay, Johanne Trépanier and Marjolaine Turgeon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Maziade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maziade, M., Roy, MA., Chagnon, Y. et al. Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. Mol Psychiatry 10, 486–499 (2005). https://doi.org/10.1038/sj.mp.4001594

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001594

Keywords

This article is cited by

Search

Quick links