Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Expanding the ‘central dogma’: the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia

Abstract

It is now evident that nonprotein coding RNA (ncRNA) plays a critical role in regulating the timing and rate of protein translation. The potential importance of ncRNAs is suggested by the observation that the complexity of an organism is poorly correlated with its number of protein coding genes, yet highly correlated with its number of ncRNA genes, and that in the human genome only a small fraction (2–3%) of genetic transcripts are actually translated into proteins. In this review, we discuss several examples of known RNA mechanisms for the regulation of protein synthesis. We then discuss the possibility that ncRNA regulation of schizophrenia risk genes may underlie the diverse findings of genetic linkage studies including that protein-altering gene polymorphisms are not generally found in schizophrenia. Thus, inadequate or mistimed expression of a functional protein may occur either due to mutation or other dysfunction of the DNA coding base pair sequence, leading to a dysfunctional protein, or due to post-transcriptional events such as abnormal ncRNA regulation of a normal gene. One or more ‘schizophrenia disease genes’ may turn out to include abnormal transcriptional units that code for RNA regulators of protein coding gene expression or to be proximal to such units, rather than to be abnormalities in the protein coding gene itself. Understanding the genetics of schizophrenia and other complex neuropsychiatric disorders might very well include consideration of RNA and epigenetic regulation of protein expression in addition to polymorphisms of the protein coding gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Mattick JS . Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2001; 2: 986–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Herbert A . The four Rs of RNA-directed evolution. Nat Genet 2004; 36: 19–25.

    Article  CAS  PubMed  Google Scholar 

  3. Taft RJ, Mattick JS . Increasing biological complexity is positively correlated with the relative genome-wide expansion of non-protein-coding DNA sequences. arXiv org 2004.

  4. Malter JS . Regulation of mRNA stability in the nervous system and beyond. J Neurosci Res 2001; 66: 311–316.

    Article  CAS  PubMed  Google Scholar 

  5. Mattick JS . Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 2003; 25: 930–939.

    Article  CAS  PubMed  Google Scholar 

  6. Voinnet O . RNA silencing: small RNAs as ubiquitous regulators of gene expression. Curr Opin Plant Biol 2002; 5: 444–451.

    Article  CAS  PubMed  Google Scholar 

  7. Couzin J . Breakthrough of the year. Small RNAs make big splash. Science 2002; 298: 2296–2297.

    Article  CAS  PubMed  Google Scholar 

  8. Kuwabara T, Hsieh J, Nakashima K, Taira K, Gage FH . A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 2004; 116: 779–793.

    Article  CAS  PubMed  Google Scholar 

  9. Hollams EM, Giles KM, Thomson AM, Leedman PJ . MRNA stability and the control of gene expression: implications for human disease. Neurochem Res 2002; 27: 957–980.

    Article  CAS  PubMed  Google Scholar 

  10. Tabor HK, Risch NJ, Myers RM . Opinion: candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 2002; 3: 391–397.

    Article  CAS  PubMed  Google Scholar 

  11. Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000; 26: 163–175.

    Article  CAS  PubMed  Google Scholar 

  12. Williams NM, Preece A, Morris DW, Spurlock G, Bray NJ, Stephens M et al. Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Arch Gen Psychiatry 2004; 61: 336–344.

    Article  CAS  PubMed  Google Scholar 

  13. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72: 83–87.

    Article  CAS  PubMed  Google Scholar 

  14. Bray NJ, Buckland PR, Owen MJ, O’Donovan MC . Cis-acting variation in the expression of a high proportion of genes in human brain. Hum Genet 2003; 113: 149–153.

    PubMed  Google Scholar 

  15. Kennedy D . Breakthrough of the year. Science 2002; 298: 2283.

    Article  CAS  PubMed  Google Scholar 

  16. Lai EC . MicroRNAs: runts of the genome assert themselves. Curr Biol 2003; 13: R925–R936.

    Article  CAS  PubMed  Google Scholar 

  17. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP . Vertebrate microRNA genes. Science 2003; 299: 1540.

    Article  CAS  PubMed  Google Scholar 

  18. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  19. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS . A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 2003; 9: 1274–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Olsen PH, Ambros V . The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 1999; 216: 671–680.

    Article  CAS  PubMed  Google Scholar 

  21. Lai EC . Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 2002; 30: 363–364.

    Article  CAS  PubMed  Google Scholar 

  22. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    Article  CAS  PubMed  Google Scholar 

  23. Lai EC, Wiel C, Rubin GM . Complementary miRNA pairs suggest a regulatory role for miRNA:miRNA duplexes. RNA 2004; 10: 171–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harrison PM, Hegyi H, Balasubramanian S, Luscombe NM, Bertone P, Echols N et al. Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res 2002; 12: 272–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Balakirev ES, Ayala FJ . Pseudogenes: are they ‘junk’ or functional DNA? Annu Rev Genet 2003; 37: 123–151.

    Article  CAS  PubMed  Google Scholar 

  26. Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML et al. Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002; 99: 3717–3722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F, Takahashi S et al. An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature 2003; 423: 91–96.

    Article  CAS  PubMed  Google Scholar 

  28. Lee JT . Molecular biology: complicity of gene and pseudogene. Nature 2003; 423: 26–28.

    Article  CAS  PubMed  Google Scholar 

  29. Bevilacqua A, Ceriani MC, Capaccioli S, Nicolin A . Post-transcriptional regulation of gene expression by degradation of messenger RNAs. J Cell Physiol 2003; 195: 356–372.

    Article  CAS  PubMed  Google Scholar 

  30. Zou Z, Eibl C, Koop HU . The stem-loop region of the tobacco psbA 5′UTR is an important determinant of mRNA stability and translation efficiency. Mol Genet Genom 2003; 269: 340–349.

    Article  CAS  Google Scholar 

  31. Andersen AA, Panning B . Epigenetic gene regulation by noncoding RNAs. Curr Opin Cell Biol 2003; 15: 281–289.

    Article  CAS  PubMed  Google Scholar 

  32. Walter J, Paulsen M . Imprinting and disease. Semin Cell Dev Biol 2003; 14: 101–110.

    Article  CAS  PubMed  Google Scholar 

  33. Jaenisch R, Bird A . Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33(Suppl): 245–254.

    Article  CAS  PubMed  Google Scholar 

  34. Weksberg R, Shuman C, Caluseriu O, Smith AC, Fei YL, Nishikawa J et al. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith–Wiedemann syndrome. Hum Mol Genet 2002; 11: 1317–1325.

    Article  CAS  PubMed  Google Scholar 

  35. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  PubMed  Google Scholar 

  36. Harrison PJ, Owen MJ . Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361: 417–419.

    Article  CAS  PubMed  Google Scholar 

  37. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, Part II: schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Badner JA, Gershon ES . Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405–411.

    Article  CAS  PubMed  Google Scholar 

  39. Miyamoto S, LaMantia AS, Duncan GE, Sullivan P, Gilmore JH, Lieberman JA . Recent advances in the neurobiology of schizophrenia. Mol Interven 2003; 3: 27–39.

    Article  Google Scholar 

  40. Coyle JT, Tsai G, Goff D . Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann NY Acad Sci 2003; 1003: 318–327.

    Article  CAS  PubMed  Google Scholar 

  41. Lewis DA, Glantz LA, Pierri JN, Sweet RA . Altered cortical glutamate neurotransmission in schizophrenia: evidence from morphological studies of pyramidal neurons. Ann NY Acad Sci 2003; 1003: 102–112.

    Article  CAS  PubMed  Google Scholar 

  42. Lieberman JA . Pathophysiologic mechanisms in the pathogenesis and clinical course of schizophrenia. J Clin Psychiatry 1999; 60(Suppl 12: 9–12): 9–12.

    PubMed  Google Scholar 

  43. Owen MJ, Williams NM, O’Donovan MC . The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry 2004; 9: 14–27.

    Article  CAS  PubMed  Google Scholar 

  44. Kennedy JL, Farrer LA, Andreasen NC, Mayeux R, George-Hyslop P . The genetics of adult-onset neuropsychiatric disease: complexities and conundra? Science 2003; 302: 822–826.

    Article  CAS  PubMed  Google Scholar 

  45. Corvin AP, Morris DW, McGhee K, Schwaiger S, Scully P, Quinn J et al. Confirmation and refinement of an ‘at-risk’ haplotype for schizophrenia suggests the EST cluster, Hs.97362, as a potential susceptibility gene at the neuregulin-1 locus. Mol Psychiatry 2004; 9: 208–213.

    Article  CAS  PubMed  Google Scholar 

  46. Eddy SR . Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2001; 2: 919–929.

    Article  CAS  PubMed  Google Scholar 

  47. Egan MF, Weinberger DR, Lu B . Schizophrenia, III: brain-derived neurotropic factor and genetic risk. Am J Psychiatry 2003; 160: 1242.

    Article  PubMed  Google Scholar 

  48. Ashe PC, Berry MD, Boulton AA . Schizophrenia, a neurodegenerative disorder with neurodevelopmental antecedents. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25: 691–707.

    Article  CAS  PubMed  Google Scholar 

  49. Sokoloff P, Guillin O, Diaz J, Carroll P, Griffon N . Brain-derived neurotrophic factor controls dopamine D3 receptor expression: implications for neurodevelopmental psychiatric disorders. Neurotox Res 2002; 4: 671–678.

    Article  CAS  PubMed  Google Scholar 

  50. Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P . BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 2001; 411: 86–89.

    Article  CAS  PubMed  Google Scholar 

  51. Weickert CS, Hyde TM, Lipska BK, Herman MM, Weinberger DR, Kleinman JE . Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 2003; 8: 592–610.

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi M, Shirakawa O, Toyooka K, Kitamura N, Hashimoto T, Maeda K et al. Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol Psychiatry 2000; 5: 293–300.

    Article  CAS  PubMed  Google Scholar 

  53. Durany N, Michel T, Zochling R, Boissl KW, Cruz-Sanchez FF, Riederer P et al. Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses. Schizophr Res 2001; 52: 79–86.

    Article  CAS  PubMed  Google Scholar 

  54. Chlan-Fourney J, Ashe P, Nylen K, Juorio AV, Li XM . Differential regulation of hippocampal BDNF mRNA by typical and atypical antipsychotic administration. Brain Res 2002; 954: 11–20.

    Article  CAS  PubMed  Google Scholar 

  55. Sasaki T, Dai XY, Kuwata S, Fukuda R, Kunugi H, Hattori M et al. Brain-derived neurotrophic factor gene and schizophrenia in Japanese subjects. Am J Med Genet 1997; 74: 443–444.

    Article  CAS  PubMed  Google Scholar 

  56. Wassink TH, Nelson JJ, Crowe RR, Andreasen NC . Heritability of BDNF alleles and their effect on brain morphology in schizophrenia. Am J Med Genet 1999; 88: 724–728.

    Article  CAS  PubMed  Google Scholar 

  57. Hawi Z, Straub RE, O’Neill A, Kendler KS, Walsh D, Gill M . No linkage or linkage disequilibrium between brain-derived neurotrophic factor (BDNF) dinucleotide repeat polymorphism and schizophrenia in Irish families. Psychiatry Res 1998; 81: 111–116.

    Article  CAS  PubMed  Google Scholar 

  58. Virgos C, Martorell L, Valero J, Figuera L, Civeira F, Joven J et al. Association study of schizophrenia with polymorphisms at six candidate genes. Schizophr Res 2001; 49: 65–71.

    Article  CAS  PubMed  Google Scholar 

  59. Szekeres G, Juhasz A, Rimanoczy A, Keri S, Janka Z . The C270T polymorphism of the brain-derived neurotrophic factor gene is associated with schizophrenia. Schizophr Res 2003; 65: 15–18.

    Article  PubMed  Google Scholar 

  60. Muglia P, Vicente AM, Verga M, King N, Macciardi F, Kennedy JL . Association between the BDNF gene and schizophrenia. Mol Psychiatry 2003; 8: 146–147.

    Article  CAS  PubMed  Google Scholar 

  61. Krebs MO, Guillin O, Bourdell MC, Schwartz JC, Olie JP, Poirier MF et al. Brain derived neurotrophic factor (BDNF) gene variants association with age at onset and therapeutic response in schizophrenia. Mol Psychiatry 2000; 5: 558–562.

    Article  CAS  PubMed  Google Scholar 

  62. Fanous AH, Neale MC, Straub RE, Webb BT, O’Neill AF, Walsh D et al. Clinical features of psychotic disorders and polymorphisms in HT2A, DRD2, DRD4, SLC6A3 (DAT1), and BDNF: a family based association study. Am J Med Genet 2004; 125B: 69–78.

    Article  PubMed  Google Scholar 

  63. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    Article  CAS  PubMed  Google Scholar 

  64. Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K, Fujita T et al. Disrupted-in-schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 2003; 8: 685–694.

    Article  CAS  PubMed  Google Scholar 

  65. Brandon NJ, Handford EJ, Schurov I, Rain JC, Pelling M, Duran-Jimeniz B et al. Disrupted in schizophrenia 1 and nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol Cell Neurosci 2004; 25: 42–55.

    Article  CAS  PubMed  Google Scholar 

  66. Austin CP, Ky B, Ma L, Morris JA, Shughrue PJ . Expression of disrupted-in-schizophrenia-1, a schizophrenia-associated gene, is prominent in the mouse hippocampus throughout brain development. Neuroscience 2004; 124: 3–10.

    Article  CAS  PubMed  Google Scholar 

  67. Millar JK, Christie S, Porteous DJ . Yeast two-hybrid screens implicate DISC1 in brain development and function. Biochem Biophys Res Commun 2003; 311: 1019–1025.

    Article  CAS  PubMed  Google Scholar 

  68. Hennah W, Varilo T, Kestila M, Paunio T, Arajarvi R, Haukka J et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003; 12: 3151–3159.

    Article  CAS  PubMed  Google Scholar 

  69. Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R et al. Chromosome 1 loci in Finnish schizophrenia families. Hum Mol Genet 2001; 10: 1611–1617.

    Article  CAS  PubMed  Google Scholar 

  70. Hwu HG, Liu CM, Fann CS, Ou-Yang WC, Lee SF . Linkage of schizophrenia with chromosome 1q loci in Taiwanese families. Mol Psychiatry 2003; 8: 445–452.

    Article  CAS  PubMed  Google Scholar 

  71. Millar JK, Christie S, Anderson S, Lawson D, Hsiao-Wei LD, Devon RS et al. Genomic structure and localisation within a linkage hotspot of disrupted in schizophrenia 1, a gene disrupted by a translocation segregating with schizophrenia. Mol Psychiatry 2001; 6: 173–178.

    Article  CAS  PubMed  Google Scholar 

  72. Lieberman JA, Koreen AR . Neurochemistry and neuroendocrinology of schizophrenia: a selective review. Schizophr Bull 1993; 19: 371–429.

    Article  CAS  PubMed  Google Scholar 

  73. Glatt SJ, Faraone SV, Tsuang MT . Meta-analysis identifies an association between the dopamine D2 receptor gene and schizophrenia. Mol Psychiatry 2003; 8: 911–915.

    Article  CAS  PubMed  Google Scholar 

  74. Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 2003; 12: 205–216.

    Article  CAS  PubMed  Google Scholar 

  75. Cardno AG, Gottesman II . Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 2000; 97: 12–17.

    Article  CAS  PubMed  Google Scholar 

  76. Kelly J, Murray RM . What risk factors tell us about the causes of schizophrenia and related psychoses. Curr Psychiatry Rep 2000; 2: 378–385.

    Article  CAS  PubMed  Google Scholar 

  77. Cooper B . Nature, nurture and mental disorder: old concepts in the new millennium. Br J Psychiatry Suppl 2001; 40: s91–s101.

    Article  CAS  PubMed  Google Scholar 

  78. Costa E, Grayson DR, Guidotti A . Epigenetic downregulation of GABAergic function in schizophrenia: potential for pharmacological intervention? Mol Interven 2003; 3: 220–229.

    Article  CAS  Google Scholar 

  79. Singh SM, Murphy B, O’Reilly R . Epigenetic contributors to the discordance of monozygotic twins. Clin Genet 2002; 62: 97–103.

    Article  CAS  PubMed  Google Scholar 

  80. Petronis A, Gottesman II, Kan P, Kennedy JL, Basile VS, Paterson AD et al. Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 2003; 29: 169–178.

    Article  PubMed  Google Scholar 

  81. Frankle WG, Lerma J, Laruelle M . The synaptic hypothesis of schizophrenia. Neuron 2003; 39: 205–216.

    Article  CAS  PubMed  Google Scholar 

  82. McManus MT . MicroRNAs and cancer. Semin Cancer Biol 2003; 13: 253–258.

    Article  CAS  PubMed  Google Scholar 

  83. Michael MZ, O’ Connor SM, Holst Pellekaan NG, Young GP, James RJ . Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003; 1: 882–891.

    CAS  PubMed  Google Scholar 

  84. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van den BA, Kroesen BJ, Kooistra K, de Jong D, Briggs J, Blokzijl T et al. High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer 2003; 37: 20–28.

    Article  CAS  Google Scholar 

  86. Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A . High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 2004; 39: 167–169.

    Article  CAS  PubMed  Google Scholar 

  87. Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 2004; 7: 113–117.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part USPHS Grants K23-MH01905-01, P50-MH064065, and UO1 MH066069 (DOP)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D O Perkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perkins, D., Jeffries, C. & Sullivan, P. Expanding the ‘central dogma’: the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia. Mol Psychiatry 10, 69–78 (2005). https://doi.org/10.1038/sj.mp.4001577

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001577

Keywords

This article is cited by

Search

Quick links