Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Blockade of CRF1 or V1b receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression

Abstract

Repeated exposure to stress is known to induce structural remodelling and reduction of neurogenesis in the dentate gyrus. Corticotrophin-releasing factor (CRF) and vasopressin (AVP) are key regulators of the stress response via activation of CRF1 and V1b receptors, respectively. The blockade of these receptors has been proposed as an innovative approach for the treatment of affective disorders. The present study aimed at determining whether the CRF1 receptor antagonist SSR125543A, the V1b receptor antagonist SSR149415, and the clinically effective antidepressant fluoxetine may influence newborn cell proliferation and differentiation in the dentate gyrus of mice subjected to the chronic mild stress (CMS) procedure, a model of depression with predictive validity. Repeated administration of SSR125543A (30 mg/kg i.p.), SSR149415 (30 mg/kg i.p.), and fluoxetine (10 mg/kg i.p.) for 28 days, starting 3 weeks after the beginning of the stress procedure, significantly reversed the reduction of cell proliferation produced by CMS, an effect which was paralleled by a marked improvement of the physical state of the coat of stressed mice. Moreover, mice subjected to stress exhibited a 53% reduction of granule cell neurogenesis 30 days after the end of the 7-week stress period, an effect which was prevented by all drug treatments. Collectively, these results point to an important role of CRF and AVP in the regulation of dentate neurogenesis, and suggest that CRF1 and V1b receptor antagonists may affect plasticity changes in the hippocampal formation, as do clinically effective antidepressants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4: 1313–1317.

    Article  CAS  Google Scholar 

  2. Gross CG . Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 2000; 1: 67–73.

    Article  CAS  Google Scholar 

  3. Gould E, Gross CG . Neurogenesis in adult mammals: some progress and problems. J Neurosci 2002; 22: 619–623.

    Article  CAS  Google Scholar 

  4. Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E . Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 1997; 17: 2492–2498.

    Article  CAS  Google Scholar 

  5. Gould E, Tanapat P, McEwen BS, Flügge G, Fuchs E . Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 1998; 95: 3168–3171.

    Article  CAS  Google Scholar 

  6. Tanapat T, Galea LA, Gould E . Stress inhibits the proliferation of granule cell precursors in the developing dentate gyrus. Int J Dev Neurosci 1998; 16: 235–239.

    Article  CAS  Google Scholar 

  7. Lemaire V, Koehl M, Le Moal M, Abrous DN . Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA 2000; 97: 11032–11037.

    Article  CAS  Google Scholar 

  8. Pham K, Nacher J, Hof PR, McEwen BS . Repeated restaint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci 2003; 17: 879–886.

    Article  Google Scholar 

  9. Malberg JE, Eisch AJ, Nestler EJ, Duman RS . Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–9110.

    Article  CAS  Google Scholar 

  10. Manev H, Uz T, Smalheiser NR, Manev R . Antidepressants alter cell proliferation in the adult brain in vivo and in neuronal cultures in vitro. Eur J Pharmacol 2001; 411: 67–70.

    Article  CAS  Google Scholar 

  11. Duman RS, Malberg J, Thome J . Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 1999; 46: 1181–1191.

    Article  CAS  Google Scholar 

  12. Jacobs BL, Praag H, Gage FH . Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 2000; 5: 262–269.

    Article  CAS  Google Scholar 

  13. Kempermann G . Regulation of adult hippocampal neurogenesis—implications for novel theories of major depression. Bipolar Disord 2002; 4: 17–33.

    Article  Google Scholar 

  14. Cameron HA, Gould E . Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 1994; 61: 203–209.

    Article  CAS  Google Scholar 

  15. Rodriguez JJ, Montaron MF, Petry KG, Aurousseau C, Marinelli M, Premier S et al. Complex regulation of the expression of the polysialylated form of the neuronal cell adhesion molecule by glucocorticoids in the rat hippocampus. Eur J Neurosci 1998; 10: 2994–3006.

    Article  CAS  Google Scholar 

  16. Holsboer F . The rationale for corticotrophin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res 1999; 33: 181–214.

    Article  CAS  Google Scholar 

  17. Aguilera G, Rabadan-Diehl C . Vasopressinergic regulation of the hypothalamic–pituitary–adrenal axis: implications for stress adaptation. Regul Pept 2000; 96: 23–29.

    Article  CAS  Google Scholar 

  18. Reul JM, Holsboer F . Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2002; 2: 23–33.

    Article  CAS  Google Scholar 

  19. Griebel G . Is there a future for neuropeptide receptor ligands in the treatment of anxiety disorders. Pharmacol Ther 1999; 82: 1–61.

    Article  CAS  Google Scholar 

  20. Serradeil-Le Gal C, Wagnon J, Simiand J, Griebel G, Lacour C, Guillon G et al. Characterization of (2S,4R)-1-[5-chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2-pyrrolidine carboxamide (SSR149415), a selective and orally active vasopressin V1b receptor antagonist. J Pharmacol Exp Ther 2002; 300: 1122–1130.

    Article  CAS  Google Scholar 

  21. Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B et al. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci USA 2002; 99: 6370–6375.

    Article  CAS  Google Scholar 

  22. Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P et al. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist. II. Characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 2002; 301: 333–345.

    Article  CAS  Google Scholar 

  23. Keck ME, Welt T, Muller MB, Uhr M, Ohl F, Wigger A et al. Reduction of hypothalamic vasopressinergic hyperdrive contributes to clinically relevant behavioral and neuroendocrine effects of chronic paroxetine treatment in a psychopathological rat model. Neuropsychopharmacology 2003; 28: 235–243.

    Article  CAS  Google Scholar 

  24. Wilner P . Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 1997; 134: 319–329.

    Article  Google Scholar 

  25. Kopp C, Vogel E, Rettori MC, Delagrange P, Misslin R . The effects of melatonin on the behavioural disturbances induced by chronic mild stress in C3H/He mice. Behav Pharmacol 1999; 10: 73–83.

    Article  CAS  Google Scholar 

  26. Czéh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, Van Kampen M et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 2001; 98: 12796–12801.

    Article  Google Scholar 

  27. Van De Hart MG, Czeh B, De Biurrun G, Michaelis T, Watanabe T, Natt O et al. Substance P receptor antagonist and clomipramine prevent stress-induced alteration in cerebral metabolites, cytogenesis in the dentate gyrus and hippocampal volume. Mol Psychiatry 2002; 7: 933–941.

    Article  Google Scholar 

  28. Takahashi T, Nowakowski RS, Caviness Jr VS . BUdR as an S-phase marker for quantitative studies of cytokinetic behaviour in the murine cerebral ventricular zone. J Neurocytol 1992; 21: 185–197.

    Article  CAS  Google Scholar 

  29. Franklin KBJ, Paxinos G . The Mouse Brain in Stereotaxic Coordinates. Academic Press: San Diego, 1997.

    Google Scholar 

  30. Eisch AJ, Barrot M, Schad CA, Self DW, Nestler EJ . Opiates inhinbit neurogenesis in the adult rat hippocampus. Proc Natl Acad Sci USA 2000; 97: 7579–7584.

    Article  CAS  Google Scholar 

  31. West MJ, Slomianka L, Gundersen HJ . Unbiased stereological estimation of the total number of neurons in the subdivision of the rat hippocampus using the optical fractionator. Anat Rec 1991; 231: 482–497.

    Article  CAS  Google Scholar 

  32. Alvarez-Buylla A, Garcia-Verdugo JM . Neurogenesis in adult subventricular zone. J Neurosi 2002; 22: 629–634.

    CAS  Google Scholar 

  33. McEwen BS . Effects of adverse experiences for brain structure and function. Biol Psychiatry 2000; 15: 721–731.

    Article  Google Scholar 

  34. Kim JJ, Diamond DM . The stressed hippocampus, synaptic plasticity and lost of memories. Nat Rev Neurosci 2002; 3: 453–462.

    Article  CAS  Google Scholar 

  35. Cameron HA, Woolley CS, McEwen BS, Gould E . Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 1993; 56: 337–344.

    Article  CAS  Google Scholar 

  36. Seki T, Arai Y . Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat. J Neurosci 1993; 13: 2351–2358.

    Article  CAS  Google Scholar 

  37. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ . Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 1999; 2: 260–265.

    Article  CAS  Google Scholar 

  38. Cooper-Kuhn C, Kuhn HG . Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Brain Res Dev Brain Res 2002; 134: 13–21.

    Article  CAS  Google Scholar 

  39. Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen B . Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol 1992; 222: 157–162.

    Article  CAS  Google Scholar 

  40. Magarinos AM, Deslandes A, McEwen BS . Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur J Pharmacol 1999; 371: 113–122.

    Article  CAS  Google Scholar 

  41. Sheline YI, Wany P, Gado MH, Csernansky JG, Vannier MW . Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 1996; 93: 3908–3913.

    Article  CAS  Google Scholar 

  42. Bremmer JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM et al. MRI-based measurement of hippocampal volume in patients with combat-related post-traumatic stress disorder. Am J Psychiatry 1995; 152: 973–981.

    Article  Google Scholar 

  43. Duman RS, Nakagawa S, Malberg J . Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 2001; 25: 836–844.

    Article  CAS  Google Scholar 

  44. Cameron HA, McEwen BS, Gould E . Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 1995; 15: 4687–4692.

    Article  CAS  Google Scholar 

  45. Brezun JM, Daszuta A . Depletion of serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 1999; 89: 999–1002.

    Article  CAS  Google Scholar 

  46. Radley JJ, Jacobs BL . 5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Res 2002; 955: 264–267.

    Article  CAS  Google Scholar 

  47. Gully D, Geslin M, Serva L, Fontaine E, Roger P, Lair C et al. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1,3-thiazol-2-amine hydrochloride (SSR125543A): a potent and selective corticotrophin-releasing factor(1) receptor antagonist. I. Biochemical and pharmacological characterization. J Pharmacol Exp Ther 2002; 301: 322–332.

    Article  CAS  Google Scholar 

  48. Hernando F, Schoots O, Lolait SJ, Burbach JP . Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology 2001; 142: 1659–1668.

    Article  CAS  Google Scholar 

  49. Chalmers DT, Lovenberg TW, Grigoriadis DE, Behan DP, De Souza EB . Corticotrophin-releasing factor receptors: from molecular biology to drug design. Trends Pharmacol Sci 1996; 17: 166–172.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M Fournier, C Aliaga, H Lacroix, and Y Biron for technical assistance, and J Alexander for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, R., Griebel, G., Pavone, G. et al. Blockade of CRF1 or V1b receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry 9, 278–286 (2004). https://doi.org/10.1038/sj.mp.4001464

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001464

Keywords

This article is cited by

Search

Quick links