Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Polymorphisms in the 5′-untranslated region of the human serotonin receptor 1B (HTR1B) gene affect gene expression

Abstract

We present evidence of complex balancing regulation of HTR1B transcription by common polymorphisms in its promoter. Computational analysis of the HTR1B gene predicted that a 5′ segment, spanning common DNA sequence variations, T−261G, A−161T, and −182INS/DEL−181, contained a putative functional promoter. Using a secreted alkaline phosphatase (SEAP) reporter gene system, we found that the haplotype −261G_−182INS−181_A−161 enhanced transcriptional activity 2.3-fold compared with the haplotype T−261_−182INS−181_A−161. Conversely, −161T reversed this, and the net effect when −261G and −161T were in the same haplotype (−261G_−182INS−181_−161T) was equivalent to the major haplotype (T−261_−182INS−181_A−161). Electrophoretic mobility shift experiments showed that −261G and −161T modify the binding of transcription factors (TFs): −261G generates a new AP2 binding site, while alleles A−161 and −161T exhibit different binding characteristics to AP1. T−261G and A−161T were found to be in linkage disequilibrium (LD) with G861C in a European ancestry population. Interestingly, G861C has been reported to be associated with several psychiatric disorders. Our results indicate that HTR1B is the target of substantial transcriptional genetic regulation by common haplotypes, which are in LD with the HTR1B single-nucleotide polymorphism (SNP) most commonly used in association studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Veenstra-VanderWeele J, Anderson GM, Cook Jr EH . Pharmacogenetics and the serotonin system: initial studies and future directions. Eur J Pharmacol 2000; 410: 165–181.

    Article  CAS  PubMed  Google Scholar 

  2. Hurley JH . Structure, mechanism, and regulation of mammalian adenylyl cyclase. J Biol Chem 1999; 274: 7599–7602.

    Article  CAS  PubMed  Google Scholar 

  3. Barnes NM, Sharp T . A review of central 5-HT receptors and their function. Neuropharmacology 1999; 38: 1083–1152.

    CAS  PubMed  Google Scholar 

  4. Moret C, Briley M . The possible role of 5-HT(1B/D) receptors in psychiatric disorders and their potential as a target for therapy. Eur J Pharmacol 2000; 404: 1–12.

    Article  CAS  PubMed  Google Scholar 

  5. Sanders AR, Duan J, Gejman PV . DNA variation and psychopharmacology of the human serotonin receptor 1B (HTR1B) gene. Pharmacogenomics 2002; 3: 745–762.

    Article  CAS  PubMed  Google Scholar 

  6. Clark MS, Sexton TJ, McClain M, Root D, Kohen R, Neumaier JF . Overexpression of 5-HT1B receptor in dorsal raphe nucleus using herpes simplex virus gene transfer increases anxiety behavior after inescapable stress. J Neurosci 2002; 22: 4550–4562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cao Q, Martinez M, Zhang J, Sanders AR, Badner JA, Cravchik A et al. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. Genomics 1997; 43: 1–8.

    Article  CAS  PubMed  Google Scholar 

  8. Sanders AR, Cao Q, Taylor J, Levin TE, Badner JA, Cravchik A et al. Genetic diversity of the human serotonin receptor 1B (HTR1B) gene. Genomics 2001; 72: 1–14.

    Article  CAS  PubMed  Google Scholar 

  9. Nöthen MM, Erdmann J, Shimron-Abarbanell D, Propping P . Identification of genetic variation in the human serotonin 1D beta receptor gene. Biochem Biophys Res Commun 1994; 205: 1194–1200.

    Article  PubMed  Google Scholar 

  10. Lappalainen J, Dean M, Charbonneau L, Virkkunen M, Linnoila M, Goldman D . Mapping of the serotonin 5-HT1D beta autoreceptor gene on chromosome 6 and direct analysis for sequence variants. Am J Med Genet 1995; 60: 157–161.

    Article  CAS  PubMed  Google Scholar 

  11. Ohara K, Xie DW, Ishigaki T, Deng ZL, Nakamura Y, Suzuki Y et al. The genes encoding the 5HT1D alpha and 5HT1D beta receptors are unchanged in patients with panic disorder. Biol Psychiatry 1996; 39: 5–10.

    Article  CAS  PubMed  Google Scholar 

  12. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 1999; 22: 231–238.

    Article  CAS  PubMed  Google Scholar 

  13. Huang YY, Grailhe R, Arango V, Hen R, Mann JJ . Relationship of psychopathology to the human serotonin1B genotype and receptor binding kinetics in postmortem brain tissue. Neuropsychopharmacology 1999; 21: 238–246.

    Article  CAS  PubMed  Google Scholar 

  14. Cigler T, LaForge KS, McHugh PF, Kapadia SU, Leal SM, Kreek MJ . Novel and previously reported single-nucleotide polymorphisms in the human 5-HT(1B) receptor gene: no association with cocaine or alcohol abuse or dependence. Am J Med Genet 2001; 105: 489–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun HF, Chang YT, Fann CS, Chang CJ, Chen YH, Hsu YP et al. Association study of novel human serotonin 5-HT(1B) polymorphisms with alcohol dependence in Taiwanese Han. Biol Psychiatry 2002; 51: 896–901.

    Article  CAS  PubMed  Google Scholar 

  16. Bruss M, Bonisch H, Buhlen M, Nothen MM, Propping P, Gothert M . Modified ligand binding to the naturally occurring Cys-124 variant of the human serotonin 5-HT1B receptor. Pharmacogenetics 1999; 9: 95–102.

    CAS  PubMed  Google Scholar 

  17. Mundo E, Zai G, Lee L, Parikh SV, Kennedy JL . The 5HT1Dbeta receptor gene in bipolar disorder: a family-based association study. Neuropsychopharmacology 2001; 25: 608–613.

    Article  CAS  PubMed  Google Scholar 

  18. Hinney A, Herrmann H, Lohr T, Rosenkranz K, Ziegler A, Lehmkuhl G et al. No evidence for an involvement of alleles of polymorphisms in the serotonin1Dbeta and 7 receptor genes in obesity, underweight or anorexia nervosa. Int J Obes Relat Metab Disord 1999; 23: 760–763.

    Article  CAS  PubMed  Google Scholar 

  19. Lappalainen J, Long JC, Eggert M, Ozaki N, Robin RW, Brown GL et al. Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch Gen Psychiatry 1998; 55: 989–994.

    Article  CAS  PubMed  Google Scholar 

  20. Hasegawa Y, Higuchi S, Matsushita S, Miyaoka H . Association of a polymorphism of the serotonin 1B receptor gene and alcohol dependence with inactive aldehyde dehydrogenase-2. J Neural Transm 2002; 109: 513–521.

    Article  CAS  PubMed  Google Scholar 

  21. New AS, Gelernter J, Goodman M, Mitropoulou V, Koenigsberg H, Silverman J et al. Suicide, impulsive aggression, and HTR1B genotype. Biol Psychiatry 2001; 50: 62–65.

    Article  CAS  PubMed  Google Scholar 

  22. Levitan RD, Kaplan AS, Masellis M, Basile VS, Walker ML, Lipson N et al. Polymorphism of the serotonin 5-HT1B receptor gene (HTR1B) associated with minimum lifetime body mass index in women with bulimia nervosa. Biol Psychiatry 2001; 50: 640–643.

    Article  CAS  PubMed  Google Scholar 

  23. Mundo E, Richter MA, Sam F, Macciardi F, Kennedy JL . Is the 5-HT(1Dbeta) receptor gene implicated in the pathogenesis of obsessive–compulsive disorder? Am J Psychiatry 2000; 157: 1160–1161.

    Article  CAS  PubMed  Google Scholar 

  24. Freiman RN, Tjian R . Regulating the regulators: lysine modifications make their mark. Cell 2003; 112: 11–17.

    Article  CAS  PubMed  Google Scholar 

  25. Cheung VG, Conlin LK, Weber TM, Arcaro M, Jen KY, Morley M et al. Natural variation in human gene expression assessed in lymphoblastoid cells. Nat Genet 2003; 33: 422–425.

    Article  CAS  PubMed  Google Scholar 

  26. Riazanskaia N, Lukiw WJ, Grigorenko A, Korovaitseva G, Dvoryanchikov G, Moliaka Y et al. Regulatory region variability in the human presenilin-2 (PSEN2) gene: potential contribution to the gene activity and risk for AD. Mol Psychiatry 2002; 7: 891–898.

    Article  CAS  PubMed  Google Scholar 

  27. Niimi T, Munakata M, Keck-Waggoner CL, Popescu NC, Levitt RC, Hisada M et al. A polymorphism in the human UGRP1 gene promoter that regulates transcription is associated with an increased risk of asthma. Am J Hum Genet 2002; 70: 718–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Esterbauer H, Schneitler C, Oberkofler H, Ebenbichler C, Paulweber B, Sandhofer F et al. A common polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in middle-aged humans. Nat Genet 2001; 28: 178–183.

    Article  CAS  PubMed  Google Scholar 

  29. Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, Bouck J et al. PipMaker—a web server for aligning two genomic DNA sequences. Genome Res 2000; 10: 577–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Knudsen S . Promoter 2.0: for the recognition of PolII promoter sequences. Bioinformatics 1999; 15: 356–361.

    Article  CAS  PubMed  Google Scholar 

  31. Quandt K, Frech K, Karas H, Wingender E, Werner T . MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 1995; 23: 4878–4884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ghosh D . TFD: the transcription factors database. Nucleic Acids Res 1992; 20(Suppl): 2091–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sheriff S, Dautzenberg FM, Mulchahey JJ, Pisarska M, Hauger RL, Chance WT et al. Interaction of neuropeptide Y and corticotropin-releasing factor signaling pathways in AR-5 amygdalar cells. Peptides 2001; 22: 2083–2089.

    Article  CAS  PubMed  Google Scholar 

  34. Cloninger CR, Kaufmann CA, Faraone SV, Malaspina D, Svrakic DM, Harkavy-Friedman J et al. Genome-wide search for schizophrenia susceptibility loci: the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet 1998; 81: 275–281.

    Article  CAS  PubMed  Google Scholar 

  35. Levinson DF, Mahtani MM, Nancarrow DJ, Brown DM, Kruglyak L, Kirby A et al. Genome scan of schizophrenia. Am J Psychiatry 1998; 155: 741–750.

    CAS  PubMed  Google Scholar 

  36. Chen X, Levine L, Kwok PY . Fluorescence polarization in homogeneous nucleic acid analysis. Genome Res 1999; 9: 492–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Akula N, Chen YS, Hennessy K, Schulze TG, Singh G, McMahon FJ . Utility and accuracy of template-directed dye-terminator incorporation with fluorescence-polarization detection for genotyping single nucleotide polymorphisms. Biotechniques 2002; 32: 1072–1078.

    Article  CAS  PubMed  Google Scholar 

  38. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abecasis GR, Cookson WO . GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  PubMed  Google Scholar 

  40. Li Q, Harju S, Peterson KR . Locus control regions: coming of age at a decade plus. Trends Genet 1999; 15: 403–408.

    Article  PubMed  Google Scholar 

  41. Loots GG, Locksley RM, Blankespoor CM, Wang ZE, Miller W, Rubin EM et al. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 2000; 288: 136–140.

    Article  CAS  PubMed  Google Scholar 

  42. Bedford FK, Julius D, Ingraham HA . Neuronal expression of the 5HT3 serotonin receptor gene requires nuclear factor 1 complexes. J Neurosci 1998; 18: 6186–6194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jin H, Oksenberg D, Ashkenazi A, Peroutka SJ, Duncan AM, Rozmahel R et al. Characterization of the human 5-hydroxytryptamine1B receptor. J Biol Chem 1992; 267: 5735–5738.

    CAS  PubMed  Google Scholar 

  44. Demchyshyn L, Sunahara RK, Miller K, Teitler M, Hoffman BJ, Kennedy JL et al. A human serotonin 1D receptor variant (5HT1D beta) encoded by an intronless gene on chromosome 6. Proc Natl Acad Sci USA 1992; 89: 5522–5526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karin M, Liu Z, Zandi E . AP-1 function and regulation. Curr Opin Cell Biol 1997; 9: 240–246.

    Article  CAS  PubMed  Google Scholar 

  46. Karin M . The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 1995; 270: 16483–16486.

    Article  CAS  PubMed  Google Scholar 

  47. Kranzler HR, Hernandez-Avila CA, Gelernter J . Polymorphism of the 5-HT1B receptor gene (HTR1B): strong within-locus linkage disequilibrium without association to antisocial substance dependence. Neuropsychopharmacology 2002; 26: 115–122.

    Article  CAS  PubMed  Google Scholar 

  48. Fehr C, Grintschuk N, Szegedi A, Anghelescu I, Klawe C, Singer P et al. The HTR1B 861G>C receptor polymorphism among patients suffering from alcoholism, major depression, anxiety disorders and narcolepsy. Psychiatry Res 2000; 97: 1–10.

    Article  CAS  PubMed  Google Scholar 

  49. Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 2003; 12: 205–216.

    Article  CAS  PubMed  Google Scholar 

  50. Price SJ, Greaves DR, Watkins H . Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene. Role of Sp1 in allele-specific transcriptional regulation. J Biol Chem 2001; 276: 7549–7558.

    Article  CAS  PubMed  Google Scholar 

  51. LeVan TD, Bloom JW, Bailey TJ, Karp CL, Halonen M, Martinez FD et al. A common single nucleotide polymorphism in the CD14 promoter decreases the affinity of Sp protein binding and enhances transcriptional activity. J Immunol 2001; 167: 5838–5844.

    Article  CAS  PubMed  Google Scholar 

  52. Rowntree R, Harris A . DNA polymorphisms in potential regulatory elements of the CFTR gene alter transcription factor binding. Hum Genet 2002; 111: 66–74.

    Article  CAS  PubMed  Google Scholar 

  53. Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, Yudkin JS, Humphries S et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 1998; 102: 1369–1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Drysdale CM, McGraw DW, Stack CB, Stephens JC, Judson RS, Nandabalan K et al. Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci USA 2000; 97: 10483–10488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miller GM, Madras BK . Polymorphisms in the 3′-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression. Mol Psychiatry 2002; 7: 44–55.

    Article  CAS  PubMed  Google Scholar 

  56. Bream JH, Young HA, Rice N, Martin MP, Smith MW, Carrington M et al. CCR5 promoter alleles and specific DNA binding factors. Science 1999; 284: 223a.

    Article  Google Scholar 

  57. Hansen TV, Rehfeld JF, Nielsen FC . Function of the C-36 to T polymorphism in the human cholecystokinin gene promoter. Mol Psychiatry 2000; 5: 443–447.

    Article  CAS  PubMed  Google Scholar 

  58. Morel F, Rauch C, Coles B, Ferrec EL, Guillouzo A . The human glutathione transferase alpha locus: genomic organization of the gene cluster and functional characterization of the genetic polymorphism in the hGSTA1 promoter. Pharmacogenetics 2002; 12: 277–286.

    Article  CAS  PubMed  Google Scholar 

  59. Shaulian E, Karin M . AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4: 131–136.

    Article  Google Scholar 

  60. Mitchell PJ, Timmons PM, Hebert JM, Rigby PW, Tjian R . Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev 1991; 5: 105–119.

    Article  CAS  PubMed  Google Scholar 

  61. Billing-Marczak K, Buzanska L, Winsky L, Nowotny M, Rudka T, Isaacs K et al. AP2-like cis element is required for calretinin gene promoter activity in cells of neuronal phenotype differentiated from multipotent human cell line DEV. Biochim Biophys Acta 2002; 1577: 412–420.

    Article  CAS  PubMed  Google Scholar 

  62. Shaulian E, Schreiber M, Piu F, Beeche M, Wagner EF, Karin M . The mammalian UV response: c-Jun induction is required for exit from p53-imposed growth arrest. Cell 2000; 103: 897–907.

    Article  CAS  PubMed  Google Scholar 

  63. Schreiber M, Kolbus A, Piu F, Szabowski A, Mohle-Steinlein U, Tian J et al. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev 1999; 13: 607–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW . Allelic variation in human gene expression. Science 2002; 297: 1143.

    Article  CAS  PubMed  Google Scholar 

  65. Yan H, Dobbie Z, Gruber SB, Markowitz S, Romans K, Giardiello FM et al. Small changes in expression affect predisposition to tumorigenesis. Nat Genet 2002; 30: 25–26.

    Article  CAS  PubMed  Google Scholar 

  66. Cowles CR, Joel NH, Altshuler D, Lander ES . Detection of regulatory variation in mouse genes. Nat Genet 2002; 32: 432–437.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project is supported by a 2001 National Alliance for Research on Schizophrenia and Depression (NARSAD) Young Investigator Award (to JD). We thank Dr JW Kasckow (University of Cincinnati College of Medicine, Cincinnati, OH, USA) for kindly providing the immortalized rat amygdalar neuron cell line (AR-5). We also thank Mr Eric B Carpenter for technical help, and Dr Jianwei Jiao for useful discussions. We thank all of the families who participated in this study. Regarding the NIMH Schizophrenia Genetics Initiative: Data and biomaterials were collected in three projects that participated in the National Institute of Mental Health (NIMH) Schizophrenia Genetics Initiative. From 1991 to 1997, the Principal Investigators and Co-Investigators were: Ming T Tsuang, MD, PhD, DSc; Stephen Faraone, PhD; and John Pepple, PhD (Harvard University, Boston, MA, U01 MH46318), C Robert Cloninger, MD; Theodore Reich, MD; and Dragan Svrakic, MD (Washington University, St Louis, MO, U01 MH46276), and Charles Kaufmann, MD; Dolores Malaspina, MD; and Jill Harkavy Friedman, PhD (Columbia University, New York, NY, U01 MH46289).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P V Gejman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, J., Sanders, A., Molen, J. et al. Polymorphisms in the 5′-untranslated region of the human serotonin receptor 1B (HTR1B) gene affect gene expression. Mol Psychiatry 8, 901–910 (2003). https://doi.org/10.1038/sj.mp.4001403

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001403

Keywords

This article is cited by

Search

Quick links