Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Neuronal mechanism of nociceptin-induced modulation of learning and memory: Involvement of N-methyl-D-aspartate receptors

Abstract

Nociceptin (also called orphanin FQ) is an endogenous heptadecapeptide that activates the opioid receptor-like 1 (ORL1) receptor. Nociceptin system not only affects the nociception and locomotor activity, but also regulates learning and memory in rodents. We have previously reported that long-term potentiation and memory of ORL1 receptor knockout mice are enhanced compared with those in wild-type mice. Here, we show the neuronal mechanism of nociceptin-induced modulation of learning and memory. Retention of fear-conditioned contextual memory was significantly enhanced in the ORL1 receptor knockout mice without any changes in cued conditioned freezing. Inversely, in the wild-type mice retention of contextual, but not cued, conditioning freezing behavior was suppressed by exogenous nociceptin when it was administered into the cerebroventricle immediately after the training. ORL1 receptor knockout mice exhibited a hyperfunction of N-methyl-D-aspartate (NMDA) receptor, as evidenced by an increase in [3H]MK-801 binding, NMDA-evoked 45Ca2+ uptake and activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity and its phosphorylation as compared with those in wild-type mice. The NMDA-induced CaMKII activation in the hippocampal slices of wild-type mice was significantly inhibited by exogenous nociceptin via a pertussis toxin-sensitive pathway. However, the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor GluR1 subunit at Ser831 and Ser845, and NMDA receptor subunit NR2B at Thr286 were phosphorylated similarly after NMDA receptor stimulation in both type of mice. The expressions of GluR1 and GluR2 also did not change, but the levels of polysialylated form of neuronal cell adhesion molecule (N-CAM) were reduced in the ORL1 receptor knockout as compared with wild-type mice. These results suggest that nociceptin system negatively modulates learning and memory through the regulation of NMDA receptor function and the expression of N-CAM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Simmons ML, Chavkin C . Endogenous opioid regulation of hippocampal function. Int Rev Neurobiol 1996; 39: 145–196.

    Article  CAS  PubMed  Google Scholar 

  2. Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerle P et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 1995; 377: 532–535.

    Article  CAS  PubMed  Google Scholar 

  3. Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR et al. Orphanin FQ: a neuropeptide that activates an opioid like G protein-coupled receptor. Science 1995; 270: 792–794.

    Article  CAS  PubMed  Google Scholar 

  4. Knoflach E, Reinscheid RK, Civelli O, Kemp JA . Modulation of voltage-gated calcium channels by orphanin FQ in freshly dissociated hippocampal neurons. J Neurosci 1996; 16: 6657–6664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ikeda K, Kobayashi K, Kobayashi T, Ichikawa T, Kumanishi T, Kishida H et al. Functional coupling of nociceptin/orphanin FQ receptor with the G-protein-activated K+ (GIRK) channel. Mol Brain Res 1997; 45: 117–126.

    Article  CAS  PubMed  Google Scholar 

  6. Yu TP, Fein J, Phan T, Evans CJ, Xie CW . Orphanin FQ inhibits synaptic transmission and long-term potentiation in rat hippocampus. Hippocampus 1997; 7: 88–94.

    Article  CAS  PubMed  Google Scholar 

  7. Darland T, Heinricher MM, Grandy DK . Orphanin FQ/nociceptin: a role in pain and analgesia, but so much more. Trends Neurosci. 1998; 21: 215–221.

    Article  CAS  PubMed  Google Scholar 

  8. Sandin J, Georgieva J, Schott PA, Ogren SO, Terenius L . Nociceptin/orphanin FQ microinjected into hippocampus impairs spatial learning in rats. Eur J Neurosci 1997; 9: 194–197.

    Article  CAS  PubMed  Google Scholar 

  9. Redrobe JP, Calo G, Guerrini R, Regoli D, Quirion R . [Nphe1]-Nociceptin (1-13)-NH2, a nociceptin receptor antagonist, reverses nociceptin-induced spatial memory impairments in the Morris water maze task in rats. Br J Pharmacol 2000; 131: 1379–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hiramatsu M, Inoue K . Effects of nocistatin on nociceptin-induced impairment of learning and memory in mice. Eur J Pharmacol 1999; 367: 151–155.

    Article  CAS  PubMed  Google Scholar 

  11. Mamiya T, Noda Y, Nishi M, Takeshima H, Nabeshima T . Nociceptin system plays a role in the memory retention: involvement of naloxone benzoylhydrazone binding sites. NeuroReport 1999; 10: 1171–1175.

    Article  CAS  PubMed  Google Scholar 

  12. Mamiya T, Noda Y, Nishi M, Takeshima H, Nabeshima T . Enhancement of spatial attention in nociceptin/orphanin FQ receptor-knockout mice. Brain Res 1998; 783: 236–240.

    Article  CAS  PubMed  Google Scholar 

  13. Manabe T, Noda Y, Mamiya T, Katagiri H, Houtani T, Nishi M et al. Facilitation of long-term potentiation and memory in mice lacking nociceptin receptor. Nature 1998; 394: 577–581.

    Article  CAS  PubMed  Google Scholar 

  14. Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M et al. Genetic enhancement of learning and memory in mice. Nature 1999; 401: 63–69.

    Article  CAS  PubMed  Google Scholar 

  15. Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL . Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 2000; 405: 955–959.

    Article  CAS  PubMed  Google Scholar 

  16. Nishi M, Houtani T, Noda Y, Mamiya T, Sato K, Doi T et al. Unstrained nociceptive response and disregulation of hearing ability in mice lacking the nociceptin/orphaninFQ receptor. EMBO J 1997; 16: 1858–1864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oike Y, Hata A, Mamiya T, Kaname T, Noda Y, Suzuki M et al. Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum Mol Genet 1999; 8: 387–396.

    Article  CAS  PubMed  Google Scholar 

  18. Kobayashi K, Noda Y, Matsushita N, Nishii K, Sawada H, Nagatsu T et al. Modest neuropsychological deficits caused by reduced noradrenaline metabolism in mice heterozygous for a mutated tyrosine hydroxylase gene. J Neurosci 2000; 20: 2418–2426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yoneda Y, Ogita K . Heterogeneity of the N-methyl-D-aspartate receptor ionophore complex in rat brain, as revealed by ligand binding techniques. J Pharmacol Exp Ther 1991; 259: 86–96.

    CAS  PubMed  Google Scholar 

  20. Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T . Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor ɛ4 subunit. J Neurosci 2002; 22: 2335–2342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Occur KA, Schulman H . Activation of multifunctional Ca2+/calmodulin-dependent protein kinase in intact hippocampal slices. Neuron 1991; 6: 907–914.

    Article  Google Scholar 

  22. Colbran RJ, Fong YL, Schworer CM, Soderling TR . Regulatory interactions of the calmodulin-binding, inhibitory, and autophosphorylation domains of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem, 1988; 263: 18145–18151.

    CAS  Google Scholar 

  23. Poluch S, Drian MJ, Durand M, Astier C, Benyamin Y, König N . AMPA receptor activation leads to neurite retraction in tangentially migrating neurons in the intermediate zone of the embryonic rat neocortex. J Neurosci Res 2001; 63: 35–44.

    Article  CAS  PubMed  Google Scholar 

  24. Lynch G, Larson J, Kelso S, Barrionuevo G, Schottler F . Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 1983; 305: 719–721.

    Article  CAS  PubMed  Google Scholar 

  25. Malenka RC, Kauer JA, Zucker RS, Nicoll RA . Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 1988; 242: 81–84.

    Article  CAS  PubMed  Google Scholar 

  26. Kennedy MB . The postsynaptic density at glutamatergic synapses. Trends Neurosci 1997; 20: 264–268.

    Article  CAS  PubMed  Google Scholar 

  27. Giese KP, Fedorov NB, Filipkowski RK, Silva AJ . Autophosphorylation at Thr286 of the α calcium-calmodulin kinase II in LTP and learning. Science 1998; 279: 870–873.

    Article  CAS  PubMed  Google Scholar 

  28. Hashimoto Y, Schworer CM, Colbran BJ, Solderling TR . Autophosphorylation of Ca2+/Calmodulin-dependent protein kinase II. J Biol Chem 1987; 262: 8051–8055.

    CAS  PubMed  Google Scholar 

  29. Fukuda K, Shoda T, Morikawa H, Kato S, Mori S . Activation of mitogen-activated protein kinase by the nociceptin receptor expressed in Chinese hamster ovary cells. FEBS Lett. 1997; 412: 290–294.

    Article  CAS  PubMed  Google Scholar 

  30. Lee HK, Kameyama K, Huganir RL, Bear MF . NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 1998; 21: 1151–1162.

    Article  CAS  PubMed  Google Scholar 

  31. Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N, Rozov A et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 1999; 284: 1805–1811.

    Article  CAS  PubMed  Google Scholar 

  32. Strack S, Colbran RJ . Autophosphorylation-dependent targeting of calcium/calmodulin-dependent protein kinase II by NR2Bsubunit of N-methyl-D-aspartate receptor. J Biol Chem 1998; 273: 20689–20692.

    Article  CAS  PubMed  Google Scholar 

  33. Strack S, McNeill RB, Colbran RJ . Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2Bsubunit of N-methyl-D-aspartate receptor. J Biol Chem 2000; 275: 23798–23806.

    Article  CAS  PubMed  Google Scholar 

  34. Kim JJ, Fanselow MS, DeCola JP, Fernandez JL . Selective impairment of long-term but not short-term conditional fear by N-methyl-D-aspartate receptor antagonist APV. Behav Neurosci 1992; 106: 591–596.

    Article  CAS  PubMed  Google Scholar 

  35. Kim JJ, Fanselow MS . Modality-specific retrograde amnesia. Science 1992; 256: 675–677.

    Article  CAS  PubMed  Google Scholar 

  36. Phillips RG, LeDoux JE . Lesions of the dorsal hippocampal formation interfere with background but not foreground contextual fear conditioning. Learn Mem 1994; 1: 34–44.

    CAS  PubMed  Google Scholar 

  37. Yuan L, Han Z, Chang JK, Han JS . Accelerated release and production of orphanin FQ in brain of chronic morphine tolerant rats. Brain Res 1999; 826: 330–334.

    Article  CAS  PubMed  Google Scholar 

  38. Silva AJ, Stevens CF, Tonegawa S, Wang Y . Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 1992; 257: 201–206.

    Article  CAS  PubMed  Google Scholar 

  39. Pettit DL, Perlman S, Malinow R . Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Science 1994; 266: 1881–1885.

    Article  CAS  PubMed  Google Scholar 

  40. Kleckner NW, Dingledine R . Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 1988; 241: 835–837.

    Article  CAS  PubMed  Google Scholar 

  41. Malinow R, Schulman H, Tsien RW . Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 1989; 245: 862–866.

    Article  CAS  PubMed  Google Scholar 

  42. Lledo PM, Hjelmstad GO, Mukherji S, Soderling TR, Malenka RC, Nicoll RA . Calcium/calmodulin-dependent protein kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci USA 1995; 92: 11175–11179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cho YH, Giese KP, Tanila H, Silva AJ, Eichebaum H . Abnormal hippocampal spatial representations in αCaMKIIT286A and CREBαδ- mice. Science 1998; 279: 867–869.

    Article  CAS  PubMed  Google Scholar 

  44. Lisman JE, Goldring MA . Feasibility of long-term storage of graded information by the Ca2+/calmodulin-dependent protein kinase molecules of the postsynaptic density. Proc Natl Acad Sci USA 1988; 85: 5320–5324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abeliovich A, Paylor R, Chen C, Kim JJ, Wehner JM, Tonegawa S . PKCγ mutant mice exhibit mild deficits in spatial and contextual learning. Cell 1993; 75: 1263–1271.

    Article  CAS  PubMed  Google Scholar 

  46. Leonard AS, Hell JW . Cyclic AMP-dependent protein kinase and protein kinase C phosphorylate N-methyl-D-aspartate receptors at different sites. J Biol Chem 1997; 272: 12107–12115.

    Article  CAS  PubMed  Google Scholar 

  47. Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD . The MAPK cascade is required for mammalian associative learning. Nat. Neurosci 1998; 1: 602–608.

    Article  CAS  PubMed  Google Scholar 

  48. Seki T, Arai Y . Different polysialic acid-neural cell adhesion molecule expression patterns in distinct types of mossy fiber boutons in the adult hippocampus. J Comp Neurol 1999; 410: 115–125.

    Article  CAS  PubMed  Google Scholar 

  49. Muller D, Wang C, Skibo G, Toni N, Cremer H, Calaora V et al. PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 1996; 17: 413–422.

    Article  CAS  PubMed  Google Scholar 

  50. Murphy KJ, Regan CM . Low-level lead exposure in the early postnatal period results in persisting neuroplastic deficits associated with memory consolidation. J Neurochem 1999; 72: 2099–2104.

    Article  CAS  PubMed  Google Scholar 

  51. Nakamura K, Manabe T, Watanabe M, Mamiya T, Ichikawa R, Kiyama Y et al. Enhancement of hippocampal LTP, reference memory and sensorimotor gating in mutant mice lacking a telencephalon-specific cell adhesion molecule. Eur J Neurosci 2001; 13: 179–189.

    Article  CAS  PubMed  Google Scholar 

  52. Nacher J, Rosell DR, Alonso-Llosa G, McEwen BS . NMDA receptor antagonist treatment induces a long-lasting increase in the number of proliferating cells, PSA-NCAM-immunoreactive granule neurons and radial glia in the adult rat dentate gyrus. Eur J Neurosci 2001; 13: 512–520.

    Article  CAS  PubMed  Google Scholar 

  53. Nacher J, Alonso-Llosa G, Rosell D, McEwen B . PSA-NCAM expression in the piriform cortex of the adult rat. Modulation by NMDA receptor antagonist administration. Brain Res 2002; 927: 111–121.

    Article  CAS  PubMed  Google Scholar 

  54. Bouzioukh F, Tell F, Rougon G, Jean A . Dual effects of NMDA receptor activation on polysialylated neural cell adhesion molecule expression during brainstem postnatal development. Eur J Neurosci 2001; 14: 1194–1202.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very thankful to Drs Takeshima and Nishi at Tohoku University for supplying the ORL1 receptor knockout mice. This work was supported, in part, by a Grant-in-Aid for Special Coordination Funds for Promoting Science and Technology, Target-Oriented Brain Science Research Program from the Ministry of Education, Culture, Sports Science and Technology of Japan, the Health Sciences Research Grants for Research on Pharmaceutical and Medical Safety from the Ministry of Health, Labor and Welfare of Japan, and the Hibino Memorial Fund and the Kyousaidan Foundation Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Nabeshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamiya, T., Yamada, K., Miyamoto, Y. et al. Neuronal mechanism of nociceptin-induced modulation of learning and memory: Involvement of N-methyl-D-aspartate receptors. Mol Psychiatry 8, 752–765 (2003). https://doi.org/10.1038/sj.mp.4001313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001313

Keywords

This article is cited by

Search

Quick links