Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Agouti-related protein prevents self-starvation

Abstract

Food restriction leads to a paradoxical increase in physical activity and further suppression of food intake, such as observed in anorexia nervosa.1,2 To understand this pathophysiological process, we induced physical hyperactivity and self-starvation in rats by restricting food in the presence of running wheels. Normally, decreased melanocortin receptor activity will prevent starvation.3,4 However, we found that self-starvation increased melanocortin receptors in the ventral medial hypothalamus, a brain region involved in eating behavior.5 Suppression of melanocortin receptor activity, via central infusion of Agouti-related protein (AgRP), increased survival rate in these rats by counteracting physical hyperactivity, food intake suppression as well as deregulated body temperature. We conclude that self-starvation may result from insufficient suppression of central melanocortin receptor activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Routtenberg A, Kuznesof AW . Self-starvation of rats living in activity wheels on a restricted feeding schedule. J Comp Physiol Psychol 1967; 64: 414–421.

    Article  CAS  PubMed  Google Scholar 

  2. Bergh C, Sodersten P . Anorexia nervosa, self-starvation and the reward of stress. Nat Med 1996; 2: 21–22.

    Article  CAS  PubMed  Google Scholar 

  3. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88: 131–141.

    Article  CAS  PubMed  Google Scholar 

  4. Chen AS, Metzger JM, Trumbauer ME, Guan XM, Yu H, Frazier EG et al. Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgen Res 2000; 9: 145–154.

    Article  CAS  Google Scholar 

  5. Bray GA, York DA . Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol Rev 1979; 59: 719–809.

    Article  CAS  PubMed  Google Scholar 

  6. Licinio J, Wong ML, Gold PW . The hypothalamic–pituitary–adrenal axis in anorexia nervosa. Psychiatry Res 1996; 62: 75–83.

    Article  CAS  PubMed  Google Scholar 

  7. Hebebrand J, van der Heyden J, Devos R, Kopp W, Herpertz S, Remschmidt H et al. Plasma concentrations of obese protein in anorexia nervosa. Lancet 1995; 346: 1624–1625.

    Article  CAS  PubMed  Google Scholar 

  8. Vaisse C, Clement K, Guy-Grand B, Froguel P . A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 1998; 20: 113–114.

    Article  CAS  PubMed  Google Scholar 

  9. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A . Severe early-onset obesity adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 1998; 19: 155–157.

    Article  CAS  PubMed  Google Scholar 

  10. Barsh GS, Farooqi IS, O'Rahilly S . Genetics of body-weight regulation. Nature 2000; 404: 644–651.

    Article  CAS  PubMed  Google Scholar 

  11. Butler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 2000; 141: 3518–3521.

    Article  CAS  PubMed  Google Scholar 

  12. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U . Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 1999; 5: 1066–1070.

    Article  CAS  PubMed  Google Scholar 

  13. Burden VR, White BD, Dean RG, Martin RJ . Activity of the hypothalamic–pituitary–adrenal axis is elevated in rats with activity-based anorexia. J Nutr 1993; 123: 1217–1225.

    Article  CAS  PubMed  Google Scholar 

  14. Hahn TM, Breininger JF, Baskin DG, Schwartz MW . Coexpression of AgRP and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1998; 1: 271–272.

    Article  CAS  PubMed  Google Scholar 

  15. Mizuno TM, Makimura H, Silverstein J, Roberts JL, Lopingco T, Mobbs CV . Fasting regulates hypothalamic neuropeptide Y, agouti-related peptide, and proopiomelanocortin in diabetic mice independent of changes in leptin or insulin. Endocrinology 1999; 140: 4551–4557.

    Article  CAS  PubMed  Google Scholar 

  16. Nijenhuis WA, Oosterom J, Adan RA . AgRP(83-132) acts as an inverse agonist on the human melanocortin-4 receptor. Mol Endocrinol 2001; 15: 164–171.

    CAS  PubMed  Google Scholar 

  17. Von Frijtag JC, Croiset G, Gispen WH, Adan RA, Wiegant VM . The role of central melanocortin receptors in the activation of the hypothalamus–pituitary–adrenal-axis and the induction of excessive grooming. Br J Pharmacol 1998; 123: 1503–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marks DL, Ling N, Cone RD . Role of the central melanocortin system in cachexia. Cancer Res 2001; 61: 1432–1438.

    CAS  PubMed  Google Scholar 

  19. Ste Marie L, Miura GI, Marsh DJ, Yagaloff K, Palmiter RD . A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc Natl Acad Sci USA 2000; 97: 12 339–12 344.

    Article  Google Scholar 

  20. Hagan MM, Rushing PA, Pritchard LM, Schwartz MW, Strack AM, Van Der Ploeg LH et al. Long-term orexigenic effects of AgRP-(83–132) involve mechanisms other than melanocortin receptor blockade. Am J Physiol Regul Integr Comp Physiol 2000; 279: R47–R52.

    Article  CAS  PubMed  Google Scholar 

  21. Graham M, Shutter JR, Sarmiento U, Sarosi I, Stark KL . Overexpression of AgRT leads to obesity in transgenic mice. Nat Genet 1997; 17: 273–274.

    Article  CAS  PubMed  Google Scholar 

  22. Wirth MM, Giraudo SQ . Agouti-related protein in the hypothalamic paraventricular nucleus: effect on feeding. Peptides 2000; 21: 1369–1375.

    Article  CAS  PubMed  Google Scholar 

  23. Murphy B, Nunes CN, Ronan JJ, Hanaway M, Fairhurst AM, Mellin TN . Centrally administered MTII affects feeding, drinking, temperature, and activity in the Sprague–Dawley rat. J Appl Physiol 2000; 89: 273–282.

    Article  CAS  PubMed  Google Scholar 

  24. Butler AA, Marks DL, Fan W, Kuhn CM, Bartolome M, Cone RD . Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat Neurosci 2001; 4: 605–611.

    Article  CAS  PubMed  Google Scholar 

  25. Adage T, Scheurink AJ, de Boer SF, de Vries K, Konsman JP, Kuipers F et al. Hypothalamic metabolic and behavioral responses to pharmacological inhibition of CNS melanocortin signaling in rats. J Neurosci 2001; 21:3639–3645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vink T, Hinney A, van Elburg AA, van Goozen SHM, Sandkuijl LA, Sinke RJ et al. Association between an agouti-related protein gene polymorphism and anorexia nervosa. Mol Psychiatry 2001; 6: 325–328.

    Article  CAS  PubMed  Google Scholar 

  27. van Dijk G, Donahey JC, Thiele TE, Scheurink AJ, Steffens AB, Wilkinson CW et al. Central leptin stimulates corticosterone secretion at the onset of the dark phase. Diabetes 1997; 46: 1911–1914.

    Article  CAS  PubMed  Google Scholar 

  28. Vrinten DH, Gispen WH, Groen GJ, Adan RA . Antagonism of the melanocortin system reduces cold and mechanical allodynia in mononeuropathic rats. J Neurosci 2000; 20: 8131–8137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bruijnzeel AW, Stam R, Croiset G, Wiegant VM . Long-term sensitization of cardiovascular responses after a single stressful experience. Physiol Behav 2001; 72: 1–6.

    Article  Google Scholar 

  30. van der Kraan M, Adan RA, Entwistle ML, Gispen WH, Burbach JP, Tatro JB . Expression of melanocortin-5 receptor in secretory epithelia supports a functional role in exocrine and endocrine glands. Endocrinology 1998; 139: 2348–2355.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A H Adan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kas, M., van Dijk, G., Scheurink, A. et al. Agouti-related protein prevents self-starvation. Mol Psychiatry 8, 235–240 (2003). https://doi.org/10.1038/sj.mp.4001206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001206

Keywords

This article is cited by

Search

Quick links