Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Tau negative frontal lobe dementia at 17q21: significant finemapping of the candidate region to a 4.8 cM interval

Abstract

We report the results of a genome-wide search in a four-generation pedigree with autosomal dominant early-onset dementia (mean onset age: 64.9 years, range 53–79 years). In this family we previously excluded the known Alzheimer's disease genes based on linkage analysis and mutation screening of the amyloid precursor protein gene (exons 16 and 17) and the presenilin 1 and 2 genes. In addition we excluded mutations in the prion protein gene and exons 9–13 of the microtubule associated protein tau (MAPT) gene. We obtained conclusive linkage with chromosome 17q21 markers with a maximum multi-point LOD score of 5.51 at D17S951 and identified a candidate region of 4.8 cM between D17S1787 and D17S958 containing MAPT. Recent clinical and neuropathological follow-up of the family showed that the phenotype most closely resembled frontotemporal dementia (FTD) characterized by dense ubiquitin-positive neuronal inclusions that were tau negative. Extensive mutation analysis of MAPT identified 38 sequence variations in exons, introns, untranslated regions and the 5′ regulatory sequence, however none was comprised within the disease haplotype. Although our findings do not entirely exclude a mutation in a yet unanalyzed region of MAPT, the apparent absence of MAPT mutations combined with the lack of tau pathology is highly suggestive for another defective gene at 17q21 responsible for FTD in this family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease Nature 1991 349: 704–706

    Article  CAS  PubMed  Google Scholar 

  2. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus Science 1995 269: 973–977

    Article  CAS  PubMed  Google Scholar 

  3. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene Nature 1995 376: 775–778

    Article  CAS  PubMed  Google Scholar 

  4. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease Nature 1995 375: 754–760

    Article  CAS  PubMed  Google Scholar 

  5. Hutton M, Busfield F, Wragg M, Crook R, Perez-Tur J, Clark RF et al. Complete analysis of the presenilin 1 gene in early onset Alzheimer's disease Neuroreport 1996 7: 801–805

    Article  CAS  PubMed  Google Scholar 

  6. Cruts M, van Duijn CM, Backhovens H, Van den BM, Wehnert A, Serneels S et al. Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease Hum Mol Genet 1998 7: 43–51

    Article  CAS  PubMed  Google Scholar 

  7. Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum Am J Hum Genet 1999 65: 664–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Collinge J . Human prion diseases and bovine spongiform encephalopathy (BSE) Hum Mol Genet 1997 6: 1699–1705

    Article  CAS  PubMed  Google Scholar 

  9. Houlden H, Baker M, Adamson J, Grover A, Waring S, Dickson D et al. Frequency of tau mutations in three series of non-Alzheimer's degenerative dementia Ann Neurol 1999 46: 243–248

    Article  CAS  PubMed  Google Scholar 

  10. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 Nature 1998 393: 702–705

    Article  CAS  PubMed  Google Scholar 

  11. Poorkaj P, Grossman M, Steinbart E, Payami H, Sadovnick A, Nochlin D et al. Frequency of tau gene mutations in familial and sporadic cases of non-Alzheimer dementia Arch Neurol 2001 58: 383–387

    CAS  PubMed  Google Scholar 

  12. Rizzu P, van Swieten JC, Joosse M, Hasegawa M, Stevens M, Tibben A et al. High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands Am J Hum Genet 1999 64: 414–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Finckh U, Muller-Thomsen T, Mann U, Eggers C, Marksteiner J, Meins W et al. High frequency of mutations in four different disease genes in early-onset dementia Ann N Y Acad Sci 2000 920: 100–106

    Article  CAS  PubMed  Google Scholar 

  14. Morris HR, Khan MN, Janssen JC, Brown JM, Perez-Tur J, Baker M et al. The genetic and pathological classification of familial frontotemporal dementia Arch Neurol 2001 58: 1813–1816

    Article  CAS  PubMed  Google Scholar 

  15. Brown J, Ashworth A, Gydesen S, Sorensen A, Rossor M, Hardy J et al. Familial non-specific dementia maps to chromosome 3 Hum Mol Genet 1995 4: 1625–1628

    Article  CAS  PubMed  Google Scholar 

  16. Hosler BA, Siddique T, Sapp PC, Sailor W, Huang MC, Hossain A et al. Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22 JAMA 2000 284: 1664–1669

    Article  CAS  PubMed  Google Scholar 

  17. van Duijn CM, Hendriks L, Farrer LA, Backhovens H, Cruts M, Wehnert A et al. A population-based study of familial Alzheimer disease: linkage to chromosomes 14, 19, and 21 Am J Hum Genet 1994 55: 714–727

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Roks G, Dermaut B, Heutink P, Julliams A, Backhovens H, Van de BM et al. Mutation screening of the tau gene in patients with early-onset Alzheimer's disease Neurosci Lett 1999 277: 137–139

    Article  CAS  PubMed  Google Scholar 

  19. Folstein MF, Folstein SE, McHugh PR . ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician J Psychiatr Res 1975 12: 189–198

    Article  CAS  PubMed  Google Scholar 

  20. Wenham PR, Price WH, Blandell G . Apolipoprotein E genotyping by one-stage PCR Lancet 1991 337: 1158–1159

    Article  CAS  PubMed  Google Scholar 

  21. Benson G . Tandem repeats finder: a program to analyze DNA sequences Nucleic Acids Res 1999 27: 573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ott J . Computer-simulation methods in human linkage analysis Proc Natl Acad Sci U S A 1989 86: 4175–4178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weeks, Ott J, Lathrop GM . SLINK: a general simulation program for linkage analysis Am J Hum Genet 1990 47: A204

    Google Scholar 

  24. Ott A, Breteler MM, van Harskamp F, Claus JJ, van der Cammen TJ, Grobbee DE et al. Prevalence of Alzheimer's disease and vascular dementia: association with education. The Rotterdam study BMJ 1995 310: 970–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lathrop GM, Lalouel JM, Julier C, Ott J . Multilocus linkage analysis in humans: detection of linkage and estimation of recombination Am J Hum Genet 1985 37: 482–498

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Poorkaj P, Kas A, D'Souza I, Zhou Y, Pham Q, Stone M et al. A genomic sequence analysis of the mouse and human microtubule- associated protein tau Mamm Genome 2001 12: 700–712

    Article  CAS  PubMed  Google Scholar 

  27. Rosso SM, Kamphorst W, de Graaf B, Willemsen R, Ravid R, Niermeijer MF et al. Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21–22 Brain 2001 124: 1948–1957

    Article  CAS  PubMed  Google Scholar 

  28. Woulfe J, Kertesz A, Munoz DG . Frontotemporal dementia with ubiquitinated cytoplasmic and intranuclear inclusions Acta Neuropathol (Berl) 2001 102: 94–102

    CAS  Google Scholar 

  29. Wei ML, Andreadis A . Splicing of a regulated exon reveals additional complexity in the axonal microtubule-associated protein tau J Neurochem 1998 70: 1346–1356

    Article  CAS  PubMed  Google Scholar 

  30. Chen WT, Liu WK, Yen SH . Expression of tau exon 8 in different species Neurosci Lett 1994 172: 167–170

    Article  CAS  PubMed  Google Scholar 

  31. Taleghany N, Oblinger MM . Regional distribution and biochemical characteristics of high molecular weight tau in the nervous system J Neurosci Res 1992 33: 257–265

    Article  CAS  PubMed  Google Scholar 

  32. Goedert M, Spillantini MG, Crowther RA . Cloning of a big tau microtubule-associated protein characteristic of the peripheral nervous system Proc Natl Acad Sci U S A 1992 89: 1983–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Georgieff IS, Liem RK, Mellado W, Nunez J, Shelanski ML . High molecular weight tau: preferential localization in the peripheral nervous system J Cell Sci 1991 100: 55–60

    CAS  PubMed  Google Scholar 

  34. Heicklen-Klein A, Ginzburg I . Tau promoter confers neuronal specificity and binds Sp1 and AP-2 J Neurochem 2000 75: 1408–1418

    Article  CAS  PubMed  Google Scholar 

  35. Ezquerra M, Pastor P, Valldeoriola F, Molinuevo JL, Blesa R, Tolosa E et al. Identification of a novel polymorphism in the promoter region of the tau gene highly associated to progressive supranuclear palsy in humans Neurosci Lett 1999 275: 183–186

    Article  CAS  PubMed  Google Scholar 

  36. Baker M, Litvan I, Houlden H, Adamson J, Dickson D, Perez-Tur J et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy Hum Mol Genet 1999 8: 711–715

    Article  CAS  PubMed  Google Scholar 

  37. de Silva R, Weiler M, Morris HR, Martin ER, Wood NW, Lees AJ . Strong association of a novel Tau promoter haplotype in progressive supranuclear palsy Neurosci Lett 2001 311: 145–148

    Article  CAS  PubMed  Google Scholar 

  38. Higgins JJ, Golbe LI, De Biase A, Jankovic J, Factor SA, Adler RL . An extended 5′-tau susceptibility haplotype in progressive supranuclear palsy Neurology 2000 55: 1364–1367

    Article  CAS  PubMed  Google Scholar 

  39. Houlden H, Baker M, Morris HR, MacDonald N, Pickering-Brown S, Adamson J et al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype Neurology 2001 56: 1702–1706

    Article  CAS  PubMed  Google Scholar 

  40. Poorkaj P, Tsuang D, Wijsman E, Steinbart E, Garruto RM, Craig UK et al. TAU as a susceptibility gene for amyotropic lateral sclerosis- parkinsonism dementia complex of Guam Arch Neurol 2001 58: 1871–1878

    Article  CAS  PubMed  Google Scholar 

  41. Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D'Amato CJ, Gilman S . Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants Ann Neurol 1997 41: 706–715

    Article  CAS  PubMed  Google Scholar 

  42. Lendon CL, Lynch T, Norton J, McKeel DW Jr, Busfield F, Craddock N et al. Hereditary dysphasic disinhibition dementia: a frontotemporal dementia linked to 17q21–22 Neurology 1998 50: 1546–1555

    Article  CAS  PubMed  Google Scholar 

  43. Basun H, Almkvist O, Axelman K, Brun A, Campbell TA, Collinge J et al. Clinical characteristics of a chromosome 17-linked rapidly progressive familial frontotemporal dementia Arch Neurol 1997 54: 539–544

    Article  CAS  PubMed  Google Scholar 

  44. Bird TD, Wijsman EM, Nochlin D, Leehey M, Sumi SM, Payami H et al. Chromosome 17 and hereditary dementia: linkage studies in three non-Alzheimer families and kindreds with late-onset FAD Neurology 1997 48: 949–954

    Article  CAS  PubMed  Google Scholar 

  45. Froelich S, Basun H, Forsell C, Lilius L, Axelman K, Andreadis A et al. Mapping of a disease locus for familial rapidly progressive frontotemporal dementia to chromosome 17q12–21 Am J Med Genet 1997 74: 380–385

    Article  CAS  PubMed  Google Scholar 

  46. Conrad C, Vianna C, Davies P . Saitohin, a novel putative gene in the tau locus Soc Neurosci Abstr 2001 27: Program No. 542.6

  47. Zhukareva V, Vogelsberg-Ragaglia V, Van Deerlin VM, Bruce J, Shuck T, Grossman M et al. Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia Ann Neurol 2001 49: 165–175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the family members for their kind cooperation in this study, and to Gerwin Roks and Hilda Kornman for the genealogy and ascertainment of family 1083. The authors also thank Thea Tadema for her technical advice with the PrP staining. This project was in part funded by the Fund for Scientific Research Flanders (FWO-F) and the International Research Foundation (IARF), Belgium; the Netherlands Organisation for Scientific Research (NWO), The Netherlands; and the Alzheimer Association, USA. MC is a postdoctoral fellow, and RR and BD are PhD fellows of the FWO-F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Van Broeckhoven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rademakers, R., Cruts, M., Dermaut, B. et al. Tau negative frontal lobe dementia at 17q21: significant finemapping of the candidate region to a 4.8 cM interval. Mol Psychiatry 7, 1064–1074 (2002). https://doi.org/10.1038/sj.mp.4001198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001198

Keywords

This article is cited by

Search

Quick links