Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Genome-wide scans of three independent sets of 90 Irish multiplex schizophrenia families and follow-up of selected regions in all families provides evidence for multiple susceptibility genes

Abstract

From our linkage study of Irish families with a high density of schizophrenia, we have previously reported evidence for susceptibility genes in regions 5q21–31, 6p24–21, 8p22–21, and 10p15–p11. In this report, we describe the cumulative results from independent genome scans of three a priori random subsets of 90 families each, and from multipoint analysis of all 270 families in ten regions. Of these ten regions, three (13q32, 18p11–q11, and 18q22–23) did not generate scores above the empirical baseline pairwise scan results, and one (6q13–26) generated a weak signal. Six other regions produced more positive pairwise and multipoint results. They showed the following maximum multipoint H-LOD (heterogeneity LOD) and NPL scores: 2p14–13: 0.89 (P = 0.06) and 2.08 (P = 0.02), 4q24–32: 1.84 (P = 0.007) and 1.67 (P = 0.03), 5q21–31: 2.88 (P= 0.0007), and 2.65 (P = 0.002), 6p25–24: 2.13 (P = 0.005) and 3.59 (P = 0.0005), 6p23: 2.42 (P = 0.001) and 3.07 (P = 0.001), 8p22–21: 1.57 (P = 0.01) and 2.56 (P = 0.005), 10p15–11: 2.04 (P = 0.005) and 1.78 (P = 0.03). The degree of ‘internal replication’ across subsets differed, with 5q, 6p, and 8p being most consistent and 2p and 10p being least consistent. On 6p, the data suggested the presence of two susceptibility genes, in 6p25–24 and 6p23–22. Very few families were positive on more than one region, and little correlation between regions was evident, suggesting substantial locus heterogeneity. The levels of statistical significance were modest, as expected from loci contributing to complex traits. However, our internal replications, when considered along with the positive results obtained in multiple other samples, suggests that most of these six regions are likely to contain genes that influence liability to schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Gottesman II, Shields J . Schizophrenia: The Epigenetic Puzzle Cambridge University Press: New York 1982

    Google Scholar 

  2. Kendler KS . The genetics of schizophrenia. In: Kaplan HI and Sadock BJ (eds). Comprehensive Textbook of Psychiatry Williams & Wilkins: New York 1999

    Google Scholar 

  3. O'Rourke DH, Gottesman II, Suarez BK, Rice J, Reich T . Refutation of the general single-locus model for the etiology of schizophrenia Am J Hum Genet 1982 34: 630–649

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Prescott CA, Gottesman II . Genetically mediated vulnerability to schizophrenia [Review] Psych Clin North Am 1993 16: 245–267

    Article  CAS  Google Scholar 

  5. Cloninger CR . Turning point in the design of linkage studies of schizophrenia Am J Med Genet 1994 54: 83–92

    Article  CAS  PubMed  Google Scholar 

  6. Badner JA, Gershon ES, Goldin LR . Optimal ascertainment strategies to detect linkage to common disease alleles Am J Hum Genet 1998 63: 880–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Terwilliger JD . On the resolution and feasibility of genome scanning approaches. In: Rao DC, Province MA (eds) Genetic Dissection of Complex Traits Academic Press: New York 2001 351–389

    Google Scholar 

  8. Suarez BK, Hampe CL, Van Eerdewegh P . Problems of replicating linkage claims in psychiatry. In: Gershon ES, Cloninger CR (eds) Genetic Approaches to Mental Disorders American Psychiatric Press: Washington, DC 1994 23–46

    Google Scholar 

  9. Martinez M, Goldin LR . Power of the linkage test for a heterogeneous disorder due to two independent inherited causes: a simulation study Genet Epidemiol 1990 7: 219–230

    Article  CAS  PubMed  Google Scholar 

  10. Chen WJ, Faraone SV, Tsuang MT . Linkage studies of schizophrenia: a simulation study of statistical power Genet Epidemiol 1992 9: 123–139

    Article  CAS  PubMed  Google Scholar 

  11. Levinson DF . Power to detect linkage with heterogeneity in samples of small nuclear families Am J Med Genet 1993 48: 94–102

    Article  CAS  PubMed  Google Scholar 

  12. Gill M, Vallada H, Collier D, Sham P, Holmans P, Murray R et al. A combined analysis of D22S278 marker alleles in affected sib-pairs: support for a susceptibility locus for schizophrenia at chromosome 22q12 Am J Med Genet 1996 67: 40–45

    Article  CAS  PubMed  Google Scholar 

  13. Vallada H, Curtis D, Sham P, Kunugi H, Zhao JH, Murray R et al. A transmission disequilibrium and linkage analysis of D22S278 marker alleles in 574 families: further support for a susceptibility locus for schizophrenia at 22q12 Schiz Res 1998 32: 115–121

    Article  Google Scholar 

  14. Schizophrenia Linkage Collaborative Group for Chromosomes 3 and 6 and 8—coordinated by DF Levinson. Additional support for schizophrenia linkage on chromosomes 6 and 8: A multicenter study Am J Med Genet 1996 67: 580–594

  15. Levinson DF, Holmans P, Straub RE, Owen MJ, Wildenauer DB, Gejman PV et al. Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III Am J Hum Genet 2000 67: 652–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karayiorgou M, Gogos JA . Dissecting the genetic complexity of schizophrenia Mol Psychiatry 1997 2: 211–223

    Article  CAS  PubMed  Google Scholar 

  17. Riley BP, McGuffin P . Linkage and associated studies of schizophrenia Am J Med Genet 2000 97: 23–44

    Article  CAS  PubMed  Google Scholar 

  18. Baron M . Genetics of schizophrenia and the the new millennium: progress and pitfalls Am J Hum Genet 2001 68: 299–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gurling HMD, Curtis D, Kalsi G, McQuillin A, Lawrence J, Murphy P et al. Genome wide linkage analysis supports the presence of two separate susceptibility loci on chromosome 1q32 for biopolar disorder and 1q21–22.3 for schizophrenia [Abstract] Am J Med Genet 2000 96: 400

    Google Scholar 

  20. Bray NJ, Owen MJ . Searching for schizophrenia genes Trends Mol Med 2001 7: 169–174

    Article  CAS  PubMed  Google Scholar 

  21. Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajarvi R et al. A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci Am J Hum Genet 1999 65: 1114–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS . Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21–q22 Science 2000 288: 678–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ekelund J, Hovatta I, Parker A, Varilo T, Pauron T, Martin R et al. Fine-mapping of a 40 CM region on chromosome 1Q in schizophrenia [Abstract] Am J Med Genet 2000 96: 461

    Google Scholar 

  24. Ye FQ, Berman KF, Ellmore T, Esposito G, van Horn JD, Yang Y et al. H(2)(15)O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans Magn Reson Med 2000 44: 450–456

    Article  CAS  PubMed  Google Scholar 

  25. Ekelund J, Lichtermann D, Hovatta I, Ellonen P, Suvisaari J, Terwilliger JD et al. Genome-wide scan for schizophrenia in the Finnish population: evidence for a locus on chromosome 7q22 Hum Mol Genet 2000 9: 1049–1057

    Article  CAS  PubMed  Google Scholar 

  26. Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R et al. Chromosome 1 loci in Finnish schizophrenia families Hum Mol Genet 2001 10: 1611–1617

    Article  CAS  PubMed  Google Scholar 

  27. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness Lancet 1990 336: 13–16

    Article  CAS  PubMed  Google Scholar 

  28. Millar JK, Christie S, Anderson S, Lawson D, Loh DH, Devon RS et al. Genomic structure and localisation within a linkage hotspot of Disrupted In Schizophrenia 1, a gene disrupted by a translocation segregating with schizophrenia Mol Psychiatry 2001 6: 173–178

    Article  CAS  PubMed  Google Scholar 

  29. Straub RE, MacLean CJ, O'Neill FA, Walsh D, Kendler KS . Support for a possible schizophrenia vulnerability locus in region 5q21–31 in Irish families Mol Psychiatry 1997 2: 148–155

    Article  CAS  PubMed  Google Scholar 

  30. Schwab SG, Eckstein GN, Hallmayer J, Lerer B, Albus M, Borrmann M et al. Evidence suggestive of a locus on chromosome 5q31 contributing to susceptibility for schizophrenia in German and Israeli families by multipoint affected sib-pair linkage analysis Mol Psychiatry 1997 2: 156–160

    Article  CAS  PubMed  Google Scholar 

  31. Byerley W, Tiobech S, Blakis A, Zuo J, Zhao M, Hoff M et al. Evidence for a 5q31 schizophrenia locus in a large multiplex kindred from Palau, Micronesia [Abstract] Mol Psychiatry 1999 4 (Suppl 1): S4–S5

    Google Scholar 

  32. Gurling HMD, Kalsi G, Blaveri E, McQuillin A, Read T, Murphy P et al. Initial genome wide parametric genetic linkage analysis of schizophrenia and schizophrenia spectrum disorders finds LOD scores above 3.00 on four chromosomes at 1q22–23, 5q22–35, 8p21–23 and 11q14–24. A further LOD above 3.00 at 4q21–31 was found within a single family [Abstract] Mol Psychiatry 1999 4 (Suppl 1): S4

    Google Scholar 

  33. Blouin J-L, Lasseter VK, Nestadt G, Wolyniec PS, Gehrig C, Antonarakis SE et al. Linkage analysis for schizophrenia susceptibility loci in candidate regions on chromosomes 5q, 6q, 10q, and 13q: a collaborative follow-up effort in one sample [Abstract] Mol Psychiatry 1999 4 (Suppl 1): S32

    Google Scholar 

  34. Straub RE, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F et al. A potential vulnerability locus for schizophrenia on chromosome 6p24–22: evidence for genetic heterogeneity Nature Genet 1995 11: 287–293

    Article  CAS  PubMed  Google Scholar 

  35. Schwab SG, Albus M, Hallmayer J, Hönig S, Borrmann M, Lichtermann D et al. Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis Nature Genet 1995 11: 325–327

    Article  CAS  PubMed  Google Scholar 

  36. Moises HW, Yang L, Kristbjarnarson H, Wiese C, Byerley W, Macciardi F et al. An international two-stage genome-wide search for schizophrenia susceptibility genes Nature Genet 1995 11: 321–324

    Article  CAS  PubMed  Google Scholar 

  37. Maziade M, Bissonnette L, Rouillard E, Martinez M, Turgeon M, Charron L et al. 6p24–22 region and major psychoses in the eastern Quebec population Am J Med Genet 1997 74: 311–318

    Article  CAS  PubMed  Google Scholar 

  38. Lindholm E, Ekholm B, Balciuniene J, Johnasson G, Castensson A, Koisti M et al. Linkage analysis of a large Swedish kindred provides further support for susceptibility locus for schizophrenia on chromosome 6p23 Am J Med Genet (Neuropsych Genet) 1999 88: 369–371

    Article  CAS  Google Scholar 

  39. Cao Q, Martinez M, Zhang J, Sanders AR, Badner JA, Cravchik A et al. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees Genomics 1997 43: 1–8

    Article  CAS  PubMed  Google Scholar 

  40. Kaufmann CA, Suarez B, Malaspina D, Pepple J, Svrakic D, Markel PD et al. NIMH Genetics Initiative Millennium Schizophrenia Consortium: Linkage analysis of African–American pedigrees Am J Med Genet 1998 81: 282–289

    Article  CAS  PubMed  Google Scholar 

  41. Pulver AE, Lasseter VK, Kasch L, Wolyniec P, Nestadt G, Blouin J-L et al. Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes Am J Med Genet 1995 60: 252–260

    Article  CAS  PubMed  Google Scholar 

  42. Kendler KS, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F et al. Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish study of high-density schizophrenia families Am J Psychiatry 1996 153: 1534–1540

    Article  CAS  PubMed  Google Scholar 

  43. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21 Nature Genet 1998 20: 70–73

    Article  CAS  PubMed  Google Scholar 

  44. Blaveri K, Kalsi G, McQuillin A, Quested D, Read T, Murphy P et al. Linkage and allelic association studies of the 8p schizophrenia locus [Abstract] Mol Psychiatry 1999 4 (Suppl 1): S31

    Google Scholar 

  45. Straub RE, MacLean CJ, Martin RB, Myakishev MV, Harris-Kerr C, O'Neill FA et al. A schizophrenia locus may be located in region 10p15–p11 Am J Med Genet 1998 81: 296–301

    Article  CAS  PubMed  Google Scholar 

  46. Faraone SV, Matise T, Svrakic D, Pepple J, Malaspina D, Suarez B et al. Genome scan of European-American schizophrenia pedigrees: results of the NIMH genetics initiative and millennium consortium Am J Med Genet 1998 81: 290–295

    Article  CAS  PubMed  Google Scholar 

  47. Schwab SG, Hallmayer J, Albus M, Lerer B, Hanses C, Kanyas K et al. Further evidence for a susceptibility locus on chromosome 10p14–p11 in 72 families with schizophrenia by nonparametric linkage analysis Am J Med Genet 1998 81: 302–307

    Article  CAS  PubMed  Google Scholar 

  48. Lin M-W ., Curtis D, Williams N, Arranz M, Nanko S, Collier D et al. Suggestive evidence for linkage of schizophrenia to markers on chromosome 13q14.1–q32 [Abstract] Psychiatr Genet 1995 5: 117–126

    Article  CAS  PubMed  Google Scholar 

  49. Lin MW, Sham P, Hwu HG, Collier D, Murray R, Powell JF . Suggestive evidence for linkage of schizophrenia to markers on chromosome 13 in Caucasian but not Oriental populations Hum Genet 1997 99: 417–420

    Article  CAS  PubMed  Google Scholar 

  50. Kalsi G, Chen C-H, Smyth C, Brynjolfsson J, Sigmudsson Th, Curtis D et al. Genetic linkage analysis in Icelandic/British family sample fails to exclude the putative chromosome 13q14.1–q32 schizophrenia susceptibility locus [Abstract] Am J Hum Genet 1996 59: A388

    Google Scholar 

  51. Brzustowicz LM, Honer WG, Chow EWC, Little D, Hogan J, Hodgkinson K et al. Linkage of familial schizophrenia to chromosome 13q32 Am J Hum Gen 1999 65: 1096–1103

    Article  CAS  Google Scholar 

  52. Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus Proc Natl Acad Sci USA 1997 94: 587–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leonard S, Gault J, Moore T, Hopkins J, Robinson M, Olincy A et al. Further investigation of a chromosome 15 locus in schizophrenia: analysis of affected sibpairs from the NIMH Genetics Initiative Am J Med Genet 1998 81: 308–312

    Article  CAS  PubMed  Google Scholar 

  54. Freedman R, Leonard S, Gault JM, Hopkins J, Cloninger CR, Kaufmann CA et al. Linkage disequilibrium for schizophrenia at the chromosome 15q13–14 locus of the alpha7-nicotinic acetylcholine receptor subunit gene (CHRNA7) Am J Med Genet 2001 105: 20–22

    Article  CAS  PubMed  Google Scholar 

  55. Coon H, Holik J, Hoff M, Reimherr F, Wender P, Myles-Worsley M et al. Analysis of chromosome 22 markers in nine schizophrenia pedigrees Am J Med Genet 1994 54: 72–79

    Article  CAS  PubMed  Google Scholar 

  56. Coon H, Jensen S, Holik J, Hoff M, Myles-Worsley M, Reimherr F et al. Genomic scan for genes predisposing to schizophrenia Am J Med Genet 1994 54: 59–71

    Article  CAS  PubMed  Google Scholar 

  57. Pulver AE, Karayiorgou M, Wolyniec PS, Lasseter VK, Kasch L, Nestadt G et al. Sequential strategy to identify a susceptibility gene for schizophrenia: report of potential linkage on chromosome 22q12–q13.1: Part 1 Am J Med Genet 1994 54: 36–43

    Article  CAS  PubMed  Google Scholar 

  58. Vallada HP, Gill M, Sham P, Lim LCC, Nanko S, Asherson P et al. Linkage studies on chromosome 22 in familial schizophrenia Am J Med Genet 1995 60: 139–146

    Article  CAS  PubMed  Google Scholar 

  59. Shaw SH, Kelly M, Smith AB, Shields G, Hopkins PJ, Loftus J et al. A genome-wide search for schizophrenia susceptibility genes Am J Med Genet 1998 81: 364–376

    Article  CAS  PubMed  Google Scholar 

  60. Li T, Ball D, Zhao J, Murray RM, Liu X, Sham PC et al. Haplotypic transmission disequilibrium analysis: application to a potential locus for schizophrenia at chromosome 22q11 [Abstract] Mol Psychiatry 1999 4 (Suppl. 1): S37–S38

    Google Scholar 

  61. Lin MW, Liu CM, Ou Yang WC, Lee SFC, Hwu HG . Weak evidence for a susceptibility locus on chromosome 22q12 in Taiwanese schizophrenic pedigrees [Abstract] Mol Psychiatry 1999 4 (Suppl. 1): S38

    Google Scholar 

  62. Coon H, Myles-Worsley M, Tiobech J, Hoff M, Rosenthal J, Bennett P et al. Evidence for a chromosome 2p13–14 schizophrenia susceptibility locus in families from Palau, Micronesia Mol Psychiatry 1998 3: 521–527

    Article  CAS  PubMed  Google Scholar 

  63. Levinson DF, Mahtani MM, Nancarrow DJ, Brown DM, Kruglyak L, Kirby A et al. Am J Psychiatry 1998 155: 741–750

  64. Pajukanta P, Terwilliger JD, Perola M, Hiekkalinna T, Nuotio I, Ellonen P et al. Genomewide scan for familial combined hyperlipidemia genes in Finnish families, suggesting multiple susceptibility loci influencing triglyceride, cholesterol, and apolipoprotein B levels Am J Hum Genet 1999 64: 1453–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Levinson DF, Mowry BJ, Ewen K, Derek J, Nancarrow DJ, Hayward NK et al. Genome scan of schizophrenia: results of genotyping of positive regions [Abstract] Mol Psychiatry 1999 4 (Suppl. 1): S37

    Google Scholar 

  66. Mowry BJ, Ewen KR, Nancarrow DJ, Lennon DP, Nertney DA, Jones HL et al. Second stage of a genome scan of schizophrenia: study of five positive regions in an expanded sample Am J Med Genet 2000 96: 864–869

    Article  CAS  PubMed  Google Scholar 

  67. Schwab SG, Hallmayer J, Lerer B, Albus M, Borrmann M, Honig S et al. Support for a chromosome 18p locus conferring susceptibility to functional psychoses in families with schizophrenia, by association and linkage analysis Am J Hum Genet 1998 63: 1139–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. DeLisi LE, Devoto M, Lofthouse R, Poulter M, Smith A, Shields G et al. Search for linkage to schizophrenia on the X and Y chromosomes Am J Med Genet 1994 54: 113–121

    Article  CAS  PubMed  Google Scholar 

  69. Dann J, DeLisi LE, Devoto M, Laval S, Nancarrow DJ, Shields G et al. Linkage study of schizophrenia to markers within Xp11 near the MAOB gene Psychiatry Res 1997 70: 131–143

    Article  CAS  PubMed  Google Scholar 

  70. Paterson AD . X-Chromosome workshop Psych Genet 1998 8: 121–126

    Article  CAS  Google Scholar 

  71. Wei J, Hemmings GP . Linkage disequilibrium mapping of chromosome Xp11 for a schizophrenia susceptibility locus [Abstract] Mol Psychiatry 1999 4: 416–417

    Article  CAS  PubMed  Google Scholar 

  72. Kendler KS, O'Neill FA, Burke J, Murphy B, Duke F, Straub RE et al. Irish study of high-density schizophrenia families: field methods and power to detect linkage Am J Med Genet 1996 67: 179–190

    Article  CAS  PubMed  Google Scholar 

  73. Spitzer RL, Williams JBW, Gibbon M, First MB . The structured clinical interview for DSM-III-R (SCID): I: History, rationale, and description Arch Gen Psychiatry 1992 49: 624–629

    Article  CAS  PubMed  Google Scholar 

  74. Kendler KS, Lieberman JA, Walsh D . The Structured Interview for Schizotypy (SIS): a preliminary report Schizophr Bull 1989 15: 559–571

    Article  CAS  PubMed  Google Scholar 

  75. Kendler KS, McGuire M, Gruenberg AM, Walsh D . An epidemiologic, clinical, and family study of simple schizophrenia in County Roscommon, Ireland Am J Psychiatry 1994 151: 27–34

    Article  CAS  PubMed  Google Scholar 

  76. Kendler KS, Diehl SR . The genetics of schizophrenia: a current, genetic-epidemiologic perspective Schizophr Bull 1993 19: 261–285

    Article  CAS  PubMed  Google Scholar 

  77. Kendler KS, McGuire M, Gruenberg AM, O'Hare A, Spellman M, Walsh D . The Roscommon family study: I. Methods, diagnosis of probands, and risk of schizophrenia in relatives Arch Gen Psychiatry 1993 50: 527–540

    Article  CAS  PubMed  Google Scholar 

  78. Kendler KS, McGuire M, Gruenberg AM, Spellman M, O'Hare A, Walsh D . The Roscommon Family Study: II. The risk of nonschizophrenic nonaffective psychoses in relatives Arch Gen Psychiatry 1993 50: 645–652

    Article  CAS  PubMed  Google Scholar 

  79. Kendler KS, McGuire M, Gruenberg AM, O'Hare A, Spellman M, Walsh D . The Roscommon family study: III. Schizophrenia-related personality disorders in relatives Arch Gen Psychiatry 1993 50: 781–788

    Article  CAS  PubMed  Google Scholar 

  80. Daniels JK, Williams NM, Williams J, Jones LA, Cardno AG, Murphy KC et al. No evidence for allelic association between schizophrenia and a polymorphism determining high or low catechol O-methyltransferase activity Am J Psychiatry 1996 153: 268–270

    Article  CAS  PubMed  Google Scholar 

  81. Eaves LJ . Effect of genetic architecture on the power of human linkage studies to resolve the contribution of quantitative trait loci Heredity (Edinburgh) 1994 72: 175–192

    Article  Google Scholar 

  82. Levinson DF . Pragmatics and statistics in psychiatric genetics Am J Med Genet 1997 74: 220–222

    Article  CAS  PubMed  Google Scholar 

  83. Morton NE . Significance levels in complex inheritance Am J Hum Gen 1998 62: 690–697

    Article  CAS  Google Scholar 

  84. Vieland VJ . Statistical Genetics ‘98: Bayesian Linkage Analysis, or: How I Learned to Stop Worrying and Love the Posterior Probability of Linkage Am J Hum Genet 1998 63: 947–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vieland VJ, Hodge SE . Statistical evidence: a likelihood paradigm (book review) Am J Hum Genet 1998 63: 283–289

    Google Scholar 

  86. Greenberg DA, Abreu P, Hodge SE . The power to detect linkage in complex disease by means of simple LOD-score analyses Am J Hum Genet 1998 63: 870–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Elston RC . 1996 William Allan Award Address. Algorithms and inferences: The challenge of multifactorial diseases Am J Hum Genet 1997 60: 255–262

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Elston RC . Methods of linkage analysis—and the assumptions underlying them Am J Hum Genet 1998 63: 931–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pontieri FE, Passarelli F, Calò L, Caronti B . Functional correlates of nicotine administration: similarity with drugs of abuse J Mol Med 1998 76: 193–201

    Article  CAS  PubMed  Google Scholar 

  90. Segman R, Neeman T, Heresco-Levy U, Finkel B, Karagichev L, Schlafman M et al. Genotypic association between the dopamine D3 receptor and tardive dyskinesia in chronic schizophrenia Mol Psychiatry 1999 4: 247–253

    Article  CAS  PubMed  Google Scholar 

  91. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results Nature Genet 1995 11: 241–247

    Article  CAS  PubMed  Google Scholar 

  92. Broman KW, Murray JC, Sheffield VC, White RL, Weber JL . Comprehensive human genetic maps: individual and sex-specific variation in recombination Am J Hum Genet 1998 63: 861–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Donis-Keller H, Green P, Helms C, Cartinhour S, Weiffenbach B, Stephens K et al. A genetic linkage map of the human genome Cell 1987 51: 319–337

    Article  CAS  PubMed  Google Scholar 

  94. Straub RE, Speer MC, Luo Y, Rojas K, Overhauser J, Ott J et al. A microsatellite genetic linkage map of human chromosome 18 Genomics 1993 15: 48–56

    Article  CAS  PubMed  Google Scholar 

  95. Straub RE, Sullivan PF, Ma Y, Myakishev MV, Harris-Kerr C, Wormley B et al. Susceptibility genes for nicotine dependence: a genome scan and followup in an independent sample suggest that chromosomes 2, 4, 10, 16, 17 and 18 merit further study Mol Psychiatry 1999 4: 129–144

    Article  CAS  PubMed  Google Scholar 

  96. Lange K, Weeks D, Boehnke M . Programs for pedigree analysis: MENDEL, FISHER, and dGENE Genet Epidemiol 1988 5: 471–472

    Article  CAS  PubMed  Google Scholar 

  97. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES . Parametric and nonparametric linkage analysis: a unified multipoint approach Am J Hum Genet 1996 58: 1347–1363

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Abreu P, Greenberg DA, Hodge SE . Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases Am J Hum Genet 1999 65: 847–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hodge SE, Abreu PC, Greenberg DA . Magnitude of type I error when single-locus linkage analysis is maximized over models: a simulation study Am J Hum Genet 1997 60: 217–227

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kendler KS, McGuire M, Gruenberg AM, O'Hare A, Spellman M, Walsh D . The Roscommon family study: IV. Affective illness, anxiety disorders, and alcoholism in relatives Arch Gen Psychiatry 1993 50: 952–960

    Article  CAS  PubMed  Google Scholar 

  101. Roberts SB, MacLean CJ, Neale MC, Eaves LJ, Kendler KS . Replication of linkage studies of complex traits: an examination of variation in location estimates Am J Hum Genet 1999 65: 876–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Darvasi A, Weinreb A, Minke V, Weller JI, Soller M . Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map Genetics 1993 134: 943–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kruglyak L, Lander ES . Complete multipoint sib-pair analysis of qualitative and quantitative traits Am J Hum Genet 1995 57: 439–454

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Whittemore AS, Halpern J . Problems in the definition, interpretation, and evaluation of genetic heterogeneity Am J Hum Genet 2001 68: 457–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Straub RE, MacLean CJ, Kendler KS . The putative schizophrenia locus on chromosome 6p: a brief overview of the linkage studies Mol Psychiatry 1996 1: 89–92

    CAS  PubMed  Google Scholar 

  106. Freimer NB, Reus VI, Escamilla MA, McInnes LA, Spesny M, Leon P et al. Genetic mapping using haplotype, association and linkage methods suggests a locus for severe bipolar disorder (BPI) at 18q22–q23 Nature Genet 1996 12: 436–441

    Article  CAS  PubMed  Google Scholar 

  107. Silverman JM, Greenberg DA, Altstiel LD, Siever LJ, Mohs RC, Smith CJ et al. Evidence of a locus for schizophrenia and related disorders on the short arm of chromosome 5 in a large pedigree Am J Med Genet 1996 67: 162–171

    Article  CAS  PubMed  Google Scholar 

  108. Sherrington R, Brynjolfsson J, Petursson H, Potter M, Dudleston K, Barraclough B et al. Localization of a susceptibility locus for schizophrenia on chromosome 5 Nature 1998 336: 164–167

    Article  Google Scholar 

  109. McGuffin P, Sargeant M, Hetti G, Tidmarsh S, Whatley S, Marchbanks RM . Exclusion of a schizophrenia susceptibility gene from the chromosome 5q11–q13 region: new data and a reanalysis of previous reports Am J Hum Genet 1990 47: 524–535

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ekelund J, Lichtermann D, Hovatta D, Ellonen P, Suvisaari J, Terwillinger JD et al. Genome-wide scan for schizophrenia in the Finnish population: evidence for a locus on chromosome 7q22 [Abstract] Mol Psychiatry 1999 4 (Suppl. 1): S3

    Google Scholar 

  111. Sullivan PF, O'Neill FA, Walsh D, Ma Y, Kendler KS, Straub RE . Analysis of epistasis in linked regions in the Irish study of high-density schizophrenia families Am J Med Genet 2001 105: 266–270

    Article  CAS  PubMed  Google Scholar 

  112. Lucek P, Hanke J, Reich J, Solla SA, Ott J . Multi-locus nonparametric linkage analysis of complex trait loci with neural networks Hum Hered 1998 48: 275–284

    Article  CAS  PubMed  Google Scholar 

  113. Rao DC . CAT scans, PET scans, and genomic scans Genet Epidemiol 1998 15: 1–18

    Article  CAS  PubMed  Google Scholar 

  114. Egan MF, Weinberger DR . Neurobiology of schizophrenia Curr Opin Neurobiol 1997 7: 701–707

    Article  CAS  PubMed  Google Scholar 

  115. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex Neuron 2000 28: 53–67

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R E Straub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straub, R., MacLean, C., Ma, Y. et al. Genome-wide scans of three independent sets of 90 Irish multiplex schizophrenia families and follow-up of selected regions in all families provides evidence for multiple susceptibility genes. Mol Psychiatry 7, 542–559 (2002). https://doi.org/10.1038/sj.mp.4001051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001051

Keywords

This article is cited by

Search

Quick links