Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Comparative analysis of group II metabotropic glutamate receptor immunoreactivity in Brodmann's area 46 of the dorsolateral prefrontal cortex from patients with schizophrenia and normal subjects

Abstract

Glutamate is the primary excitatory neurotransmitter in the mammalian central nervous system, and a key neurotransmitter in prefrontal cortical function. Converging lines of evidence implicate prefrontal cortical dysfunction in the neurobiology of schizophrenia. Thus, aberrant glutamate neurotransmission may underlie schizophrenia and other complex disorders of behavior. Group II metabotropic receptors (mGluRs) are important modulators of glutamatergic and non-glutamatergic neurotransmission. Moreover, in an animal model, an agonist for group II mGluRs has been shown to reverse the behavioral, locomotor, and cognitive effects of the psychotomimetic drug phencyclidine. Accordingly, group II mGluRs constitute attractive targets for the pharmacotherapeutics and study of schizophrenia. Using immunocytochemistry and Western immunoblotting, we compared the localization and levels of group II mGluRs in Brodmann's area 46 of the dorsolateral prefrontal cortex from patients with schizophrenia and normal subjects. Consistent with previous reports, we found that immunolabeling of group II mGluRs is prominent in Brodmann's area 46. The majority of labeling was present on axon terminals distributed in a lamina-specific fashion. No apparent difference in the cellular localization or laminar distribution of immunoreactive group II mGluRs was noted between the two diagnostic groups. Similarly, the levels of receptor immunoreactivity determined by quantitative Western immunoblotting were comparable between schizophrenic patients and normal subjects. We conclude that while the function of group II mGluRs in Brodmann's area 46 of dorsolateral prefrontal cortex may be altered in patients with schizophrenia, this is not evident at the level of protein expression using an antibody against mGluR2 and mGluR3.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Greenamyre JT, Porter RHP . Anatomy and physiology of glutamate in the CNS Neurology 1994 44 (Suppl 8): S7–S13

    Google Scholar 

  2. Farber NB, Newcomer JW, Olney JW . The glutamate synapse in neuropsychiatric disorders: focus on schizophrenia and Alzheimer's disease Prog Brain Res 1998 116: 421–437

    Article  CAS  Google Scholar 

  3. Cooper JR . Amino acid transmitters. In: The Biochemical Basis of Neuropharmacology Oxford University Press: New York 1996 pp 116–193

  4. Fonnum F . Glutamate: a neurotransmitter in mammalian brain J Neurochem 1984 42: 1–11

    Article  CAS  Google Scholar 

  5. Bartha R, Williamson PC, Drost DJ, Malla A, Carr TJ, Cortese L et al. Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy Arch Gen Psychiatry 1997 54: 959–965

    Article  CAS  Google Scholar 

  6. Glantz LA, Lewis DA . Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia Arch Gen Psychiatry 2000 57: 65–73

    Article  CAS  Google Scholar 

  7. Selemon LD, Rajkowska G, Goldman-Rakic PS . Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: application of a three-dimensional stereologic counting method J Comp Neurol 1998 392: 402–412

    Article  CAS  Google Scholar 

  8. Lewis DA . Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia Neurophychopharmacology 1997 16: 385–398

    Article  CAS  Google Scholar 

  9. Karson CN, Mrak RE, Schluterman KO, Sturner WQ, Sheng JG, Griffin WST . Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for ‘hypofrontality’ Mol Psychiatry 1999 4: 39–45

    Article  CAS  Google Scholar 

  10. Selemon LD, Goldman-Rakic PS . The reduced neuropil hypothesis: a circuit based model of schizophrenia Biol Psychiatry 1999 45: 17–25

    Article  CAS  Google Scholar 

  11. Weinberger DR, Berman KF, Zec RF . Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. I Regional cerebral blood flow (rCBF) evidence Arch Gen Psychiatry 1986 45: 609–615

    Article  Google Scholar 

  12. Carlsson A, Hansson LO, Waters N, Carlsson ML . A glutamatergic deficiency model of schizophrenia Br J Psychiatry 1999 174 (Suppl 37): 2–6

    Article  Google Scholar 

  13. Bartha R, Williamson PC, Drost DJ, Malla A, Carr TJ, Cortese L et al. Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy Arch Gen Psychiatry 1997 54: 959–965

    Article  CAS  Google Scholar 

  14. Moghaddam B, Adams BW, Verma A, Daly D . Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex J Neuroscience 1997 17: 2921–2927

    Article  CAS  Google Scholar 

  15. Moghaddam B, Adams BW . Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats Science 1998 281: 1349–1352

    Article  CAS  Google Scholar 

  16. Javitt DC, Zukin SR . Recent advances in the phencyclidine model of schizophrenia Am J Psychiatry 1991 148: 1301–1308

    Article  CAS  Google Scholar 

  17. Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D et al. NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers Neuropsychopharmacology 1996 14: 301–307

    Article  CAS  Google Scholar 

  18. Newcomer JW, Farber NB, Jevtovic-Tedorovic V, Selke G, Melson AK, Hershey T et al. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis Neuropsychopharmacology 1999 20: 106–118

    Article  CAS  Google Scholar 

  19. Lahti AC, Koffel B, LaPorte D, Tamminga CA . Subanesthetic doses of ketamine stimulate psychosis in schizophrenia Neuropsychopharmacology 1995 13: 9–19

    Article  CAS  Google Scholar 

  20. Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D et al. Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics Neuropsychopharmacology 1997 17: 141–150

    Article  CAS  Google Scholar 

  21. Shroeder U, Schroeder H, Schwegler H, Sable BA . Neuroleptics ameliorate phencyclidine-induced impairments of short-term memory Br J Pharmacol 2000 130: 33–40

    Article  Google Scholar 

  22. Verma A, Moghaddam B . The role of excitatory amino acids in prefrontal cortex function as assessed by spatial delayed alternation performance in rats: modulation by dopamine J Neurosci 1996 16: 373–379

    Article  CAS  Google Scholar 

  23. Parada-Turska J, Turski W . Excitatory amino acid antagonists and memory: effect of drugs acting at N-methyl-D-aspartate receptors in learning and memory tasks Neuropharmacology 1990 29: 1111–1116

    Article  CAS  Google Scholar 

  24. Krystal J, D'Souza DC, Karper LP, Bennett A, Abi-Dargham A, Abi-Saab D et al. Interactive effects of subanesthetic ketamine and haloperidol in healthy humans Psychopharmacol (Berl) 1999 145: 193–204

    Article  CAS  Google Scholar 

  25. Wang JK, Thukral V . Presynaptic NMDA receptors display physiological characteristics of homomeric complexes of NRI subunits that contain the exon 5 insert in the N-terminal domain J Neurochem 1996 66: 865–868

    Article  CAS  Google Scholar 

  26. Huntly GW, Vickers JC, Morrison JH . Cellular and synaptic localization of NMDA and non-NMDA receptor subunits in neocortex: organization features related to cortical circuitry, function and disease Trends Neurosci 1994 17: 536–542

    Article  Google Scholar 

  27. Smirnova T, Stinnakre J, Mallet J . Characterization of a presynaptic glutamate receptor Science 1993 262: 430–433

    Article  CAS  Google Scholar 

  28. Richardson-Burns SM, Haroutunian V, Davis KL, Watson SJ, Meador-Woodruff JH . Metabotropic glutamate receptor mRNA expression in the schizophrenic thalamus Biol Psychiatry 2000 47: 22–28

    Article  CAS  Google Scholar 

  29. Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC . Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia Brain Res Mol Brain Res 1998 56: 207–217

    Article  CAS  Google Scholar 

  30. Pin JP, Duvoisin R . The metabotropic glutamate receptors: structure and functions Neuropharmacology 1995 34: 1–26

    Article  CAS  Google Scholar 

  31. Salt TE, Eaton SA . Function of metabotropic excitatory amino acid receptors in sensory transmission in the thalamus: studies with novel phenyglycine antagonists Neurochemistry 1994 24: 451–458

    Article  CAS  Google Scholar 

  32. Anwyl R . Metabotropic glutamate receptors: electrophysiological properties and role in plasticity Brain Res Rev 1999 29: 83–120

    Article  CAS  Google Scholar 

  33. Holscher C, Gigg J, O'Mara S . Metabotropic glutamate receptor activation and blockade: their role in long-term potentiation, learning, and neurotoxicity Neurosci Biobehav Rev 1999 23: 399–410

    Article  CAS  Google Scholar 

  34. Conn PJ, Pin JP . Pharmacology and functions of metabotropic glutamate receptors Ann Rev Pharmacol Toxicol 1997 37: 205–237

    Article  CAS  Google Scholar 

  35. Pellicciari R, Costantino G . Metabotropic G-protein-coupled glutamate receptors as therapeutic targets Curr Opin Chemical Biol 1999 3: 433–440

    Article  CAS  Google Scholar 

  36. Schoepp DD, Jane DD, Monn JA . Pharmacological agents acting at subtypes of metabotropic glutamate receptors Neuropharmacology 1999 38: 1431–1476

    Article  CAS  Google Scholar 

  37. Schoepp DD, Johnson BG, Monn JA . Inhibition of cyclic AMP formation by a selective metabotropic glutamate receptor agonist J Neurochem 1992 58: 1184–1186

    Article  CAS  Google Scholar 

  38. Chavis P, Shinozaki H, Bockaert J, Fagni L . The metabotropic glutamate receptor types 2/3 inhibit L-type calcium channels via a pertussis toxin-sensitive G-protein in cultured cerebellar granule cells J Neurosci 1994 14: 7067–7076

    Article  CAS  Google Scholar 

  39. Battaglia G, Bruno V, Ngomba RT, Di Grezia R, Copani A, Nicoletti F . Selective activation of group-II metabotropic glutamate receptors is protective against excitotoxic neuronal death Eur J Pharmacol 1998 256: 271–274

    Article  Google Scholar 

  40. Bond A, O'Neill MJ, Hicks CA, Monn JA, Lodge D . Neuroprotective effects of a systemically active group II metabotropic glutamate receptor agonist LY354740 in a gerbil model of global ischemia Neuroreport 1998 9: 1191–1193

    Article  CAS  Google Scholar 

  41. Petralia RS, Wang YX, Niedzielski S, Wenthold RJ . The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations Neuroscience 1996 71: 949–976

    Article  CAS  Google Scholar 

  42. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn American Psychiatric Press: Washington, DC 1994

  43. Rajkowska G, Goldman-Rakic PS . Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the talairach coordinate system Cereb Cortex 1995 5: 323–337

    Article  CAS  Google Scholar 

  44. Iniguez C, Gayoso MJ, Carreres J . A versatile and simple method for staining nervous tissues using Giemsa dye J Neurosci Meth 1985 13: 77–86

    Article  CAS  Google Scholar 

  45. Laemmli UK . Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature 1979 227: 680–685

    Article  Google Scholar 

  46. Testa CM, Friberg IK, Weiss SW, Standaert DG . Immunohistochemical localization of metabotropic glutamate receptors mGluR1a and mGluR2/3 in the rat basal ganglia J Comp Neurol 1998 390: 5–19

    Article  CAS  Google Scholar 

  47. Yung KK . Localization of glutamate receptors in dorsal horn of rat spinal cord Neuroreport 1998 9: 1639–1644

    Article  CAS  Google Scholar 

  48. Daly DA, Moghaddam B . Actions of clozapine and haloperidol on the extracellular levels of excitatory amino acids in the prefrontal cortex and striatum of conscious rats Neurosci Lett 1993 152: 61–64

    Article  CAS  Google Scholar 

  49. Yamamoto BK, Cooperman MA . Differential effects of chronic antipsychotic drug treatment on extracellular glutamate and dopamine concentrations J Neurosci 1994 14: 4159–4166

    Article  CAS  Google Scholar 

  50. Ossowska K, Pietraszek M, Wardas J, Nowak G, Zajaczkowski W, Wolfarth S et al. The role of glutamate receptors in antipsychotic drug action Amino Acids 2000 19: 87–94

    Article  CAS  Google Scholar 

  51. Cartmell J, Monn JA, Schoepp DD . The mGlu(2/3) receptor agonist LY379268 selectively blocks amphetamine ambulations and rearing Eur J Pharmacol 2000 400: 221–224

    Article  CAS  Google Scholar 

  52. Cartmell J, Perry KW, Salhoff CR, Monn JA, Schoepp DD . The potent, selective mGlu2/3 receptor agonist LY379268 increases extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindole-3-acetic acid in the medial prefrontal cortex of the freely moving rat J Neurochem 2000 75: 1147–1154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contribution made to the present study by Dr Mary M Herman, Nikki Cohn, and Eva Tomaskovic-Crook. We are particularly indebted to the families of the individuals included in this study, and the Medical Examiners’ Office of the District of Columbia (Washington DC, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T M Hyde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crook, J., Akil, M., Law, B. et al. Comparative analysis of group II metabotropic glutamate receptor immunoreactivity in Brodmann's area 46 of the dorsolateral prefrontal cortex from patients with schizophrenia and normal subjects. Mol Psychiatry 7, 157–164 (2002). https://doi.org/10.1038/sj.mp.4000966

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000966

Keywords

This article is cited by

Search

Quick links