Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Developmental and stress-related changes of neurotrophic factor gene expression in an animal model of schizophrenia

Abstract

The neonatal (PND 7) lesion of the ventral hippocampus (VH) with ibotenic acid represents a well-established experimental paradigm that recapitulates many schizophrenia-like phenomena. In order to investigate molecular changes that could contribute to long lasting consequences on brain function, we have investigated the effects of the VH lesion on the expression for the trophic factors FGF-2 and BDNF. We used RNase protection assay to measure their mRNA levels in cortical regions of prepubertal (PND 35) and young adult (PND 56) animals, both under basal condition as well as in response to an acute restraint stress. The expression of BDNF was not altered by the VH lesion in prefrontal (PFC) and frontal cortex (FC) of PND 35 or PND 56 rats. An acute restraint stress at PND 35 produced a significant increase of the neurotrophin expression in PFC of sham as well as lesioned animals. However in young adult animals a significant elevation of BDNF expression was observed only in sham rats. We also found that the VH lesion produced a significant reduction of basal BDNF mRNA levels in the cingulate cortex of young adult, but not prepubertal rats. This effect was not accompanied by changes in the acute modulation of the neurotrophin, which was up-regulated by stress in both experimental groups. Conversely the expression of FGF-2 at PND 35 and PND 56 was not altered by early postnatal VH lesion, and there were no major differences between sham and lesioned animals in response to the acute stress. The changes in trophic factor expression may be relevant for the long-term effects of VH lesion on synaptic plasticity and may determine an increased vulnerability of the brain under challenging situations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Selemon LD, Rajkowska G, Goldman-Rackic PS . Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17 Arch Gen Psychiatry 1995 52: 805–818

    Article  CAS  Google Scholar 

  2. Zaidel DW, Esin MM, Harrison PJ . Size, shape and orientation of neurons in the left and right hippocampus: investigation of normal asymmetry in neuronal density and alternations in schizophrenia Am J Psychiatry 1997 154: 812–818

    Article  CAS  Google Scholar 

  3. Zaidel DW, Esin MM, Harrison PJ . The hippocampus in schizophrenia: lateralized increase in neuronal density and altered cytoarchitectural asymmetry Psychol Med 1997 27: 703–713

    Article  CAS  Google Scholar 

  4. DeLisi LE, Sakuma M, Tew W, Kushner M, Hoff AL, Grimson R . Schizophrenia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia Psychiatr Res Neuroimag 1997 74: 129–140

    Article  CAS  Google Scholar 

  5. Dwork AJ . Postmortem studies of the hippocampal formation in schizophrenia Schizophr Bull 1997 23: 385–402

    Article  CAS  Google Scholar 

  6. Weinberger DR . From neuropathology to neurodevelopment Lancet 1995 346: 552–557

    Article  CAS  Google Scholar 

  7. Weinberger DR, Lipska BK . Cortical maldevelopment, anti-psychotic drugs and schizophrenia: a search for common ground Schizophr Res 1995 16: 87–110

    Article  CAS  Google Scholar 

  8. Harrison PJ . Schizophrenia: a disorder of neurodevelopment? Curr Opinion Neurobiol 1997 7: 285–289

    Article  CAS  Google Scholar 

  9. Raedler TJ, Knable MB, Weinberger DR . Schizophrenia as a developmental disorder of the cerebral cortex Curr Opinion Neurobiol 1998 8: 157–161

    Article  CAS  Google Scholar 

  10. Thome J, Foley P, Riederer P . Neurotrophic factors and the maldevelopmental hypothesis of schizophrenic psychoses J Neural Transm 1998 105: 85–100

    Article  CAS  Google Scholar 

  11. Barde Y-A . Trophic factors and neuronal survival Neuron 1989 2: 1525–1534

    Article  CAS  Google Scholar 

  12. Thoenen H . Neurotrophins and neuronal plasticity Science 1996 270: 593–598

    Article  Google Scholar 

  13. Black IB . Trophic regulation of synaptic plasticity Neurobiology 1999 41: 108–118

    Article  CAS  Google Scholar 

  14. McAllister AK, Katz LC, Lo DC . Neurotrophins and synaptic plasticity Ann Rev Neurosci 1999 22: 295–318

    Article  CAS  Google Scholar 

  15. Baird A . Fibroblast growth factors: activities and significance of non-neurotrophin neurotrophic growth factors Curr Opinion Neurobiol 1994 4: 78–86

    Article  CAS  Google Scholar 

  16. Riva MA, Mocchetti I . Developmental expression of basic fibroblast growth factor gene in rat brain Dev Brain Res 1991 62: 45–50

    Article  CAS  Google Scholar 

  17. Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, Furth ME et al. NT-3, BDNF and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression Neuron 1990 5: 501–509

    Article  CAS  Google Scholar 

  18. Dono R, Texido G, Dussel R, Ehmke H, Zeller R . Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice EMBO J 1998 17: 4213–4225

    Article  CAS  Google Scholar 

  19. Vaccarino FM, Schwartz ML, Raballo R, Nilsen J, Rhee J, Zhou M et al. Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis Nature Neurosci 1999 2: 246–253

    Article  CAS  Google Scholar 

  20. Ernfors P, Wetmore C, Olson L, Persson H . Identification of cells in rat brain and peripheral tissues expressing mRNAs for members of the nerve growth factor family Neuron 1990 5: 511–526

    Article  CAS  Google Scholar 

  21. Hofer M, Paglusi SR, Hohn A, Leibrock J, Barde Y-A . Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain EMBO J 1990 9: 2459–2464

    Article  CAS  Google Scholar 

  22. Ghosh A, Carnahan J, Greenberg ME . Requirement for BDNF in activity-dependent survival of cortical neurons Science 1994 263: 1618–1623

    Article  CAS  Google Scholar 

  23. Mamounas LA, Blue ME, Siuciak JA, Altar CA . Brain-derived neurotrophic factor promotes the survival and the sprouting of serotoninergic axons in rat brain J Neurosci 1995 15: 7929–7939

    Article  CAS  Google Scholar 

  24. Ernfors P, Bengzon J, Kokaia Z, Persson H, Lindvall O . Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis Neuron 1991 7: 165–176

    Article  CAS  Google Scholar 

  25. Lindvall O, Kokaia Z, Bengzon J, Elmer E, Kokaia M . Neurotrophins and brain insults TiNS 1994 17: 490–496

    CAS  PubMed  Google Scholar 

  26. Simonato M, Molteni R, Bregola G, Muzzolini A, Piffanelli M, Beani L et al. Different patterns of induction of FGF-2, FGF-1 and BDNF mRNA during kindling epileptogenesis in the rat Eur J Neurosci 1998 10: 955–963

    Article  CAS  Google Scholar 

  27. Smith MA, Makino S, Kvetnansky R, Post RM . Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in hippocampus J Neurosci 1995 15: 1768–1777

    Article  CAS  Google Scholar 

  28. Smith MA, Makino S, Kim S-Y, Kvetnansky R . Stress increased brain-derived neurotrophic factor messenger ribonucleic acid in the hypothalamus and pituitary Endocrinology 1995 136: 3743–3750

    Article  CAS  Google Scholar 

  29. Zafra F, Castren E, Thoenen H, Lindholm D . Interplay between glutamate and -aminobutyric acid transmitter systems in the physiological regulation of brain-derived neurotrophic factor and nerve growth factor synthesis in hippocampal neurons Proc Natl Acad Sci USA 1991 88: 10037–10041

    Article  CAS  Google Scholar 

  30. Berninger B, Marty S, Zafra F, da Penha Berzaghi M, Thoenen H . GABAergic stimulation switches from enhancing to repressing BDNF expressing in rat hippocampal neurons during maturation in vitro Development 1995 121: 2327–2335

    CAS  PubMed  Google Scholar 

  31. Bikfalvi A, Klein S, Pintucci G, Rifkin DB . Biological roles of fibroblast growth factor-2 Endocrine Rev 1997 18: 26–45

    CAS  Google Scholar 

  32. Riva MA, Gale K, Mocchetti I . Basic fibroblast growth factor mRNA increases in specific brain regions following convulsive seizures Mol Brain Res 1992 15: 311–318

    Article  CAS  Google Scholar 

  33. Riva MA, Donati E, Tascedda F, Zolli M, Racagni G . Short- and long-term induction of basic fibroblast growth factor gene expression in rat central nervous system following kainate injection Neuroscience 1994 59: 55–65

    Article  CAS  Google Scholar 

  34. Follesa P, Mocchetti I . Regulation of basic fibroblast growth factor and nerve growth factor mRNA by β-adrenergic receptor activation and adrenal steroids in rat central nervous system Mol Pharmacol 1993 43: 132–138

    CAS  PubMed  Google Scholar 

  35. Riva MA, Fumagalli F, Racagni G . Opposite regulation of basic FGF and NGF gene expression in rat cortical astrocytes following dexamethasone treatment J Neurochem 1995 64: 2526–2533

    Article  CAS  Google Scholar 

  36. Riva MA, Molteni R, Lovati E, Fumagalli F, Rusnati M, Racagni G . Cyclic AMP-dependent regulation of fibroblast growth factor-2 messenger RNA levels in rat cortical astrocytes: comparison with fibroblast growth factor-1 and ciliary neurotrophic factor Mol Pharmacol 1996 49: 699–706

    CAS  PubMed  Google Scholar 

  37. Gomez-Pinilla F, Dao L, So V . Physical exercise induces FGF-2 and its mRNA in the hippocampus Brain Res 1997 764: 1–8

    Article  CAS  Google Scholar 

  38. Gomez-Pinilla F, So V, Kesslak JP . Spatial learning and physical activity contribute to the induction of fibroblast growth factor: neural substrates for increased cognition associated with exercise Neuroscience 1998 85: 56–61

    Article  Google Scholar 

  39. Anderson KJ, Dam D, Lee S, Cotman CW . Basic fibroblast growth factor prevents death of lesioned cholinergic neurons in vivo Nature 1988 332: 360–361

    Article  CAS  Google Scholar 

  40. Otto D, Unsicker K . Basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP-treated mice J Neurosci 1990 10: 1912–1921

    Article  CAS  Google Scholar 

  41. Peterson DA, Lucidi-Phillipi CA, Murphy DP, Ray J, Gage FH . Fibroblast growth factor-2 protects entorhinal layer II glutamatergic neurons from axotomy-induced death J Neurosci 1996 16: 886–898

    Article  CAS  Google Scholar 

  42. Cheng B, Mattson MP . NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis Neuron 1991 7: 1031–1041

    Article  CAS  Google Scholar 

  43. Rowntree S, Kolb B . Blockade of basic fibroblast growth factor retards recovery from motor cortex injury in rats Eur J Neurosci 1997 9: 2432–2442

    Article  CAS  Google Scholar 

  44. Lipska BK, Jaskiw GE, Weinberger DR . Postpubertal emergence of hyperresponsiveness to stress and to amphetamine alter neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia Neuropsychopharmacology 1993 9: 67–75

    Article  CAS  Google Scholar 

  45. Lipska BK, Weinberger DR . Delayed effects of neonatal hippocampal damage on haloperidol-induced catalepsy and apomorphine-induced stereotypic behaviors in the rat Dev Brain Res 1993 75: 213–222

    Article  CAS  Google Scholar 

  46. Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR . Neonatal excitotoxic hippocampal damage in rats causes postpubertal changes in prepulse inhibition of startle and its disruption by apomorphine Psychopharmacology 1995 122: 35–43

    Article  CAS  Google Scholar 

  47. Lipska BK, Weinberger DR . Genetic variation in vulnerability to the behavioral effects of neonatal hippocampal damage in rats PNAS 1995 92: 8906–8910

    Article  CAS  Google Scholar 

  48. Sams-Dodd F, Lipska BK, Weinberger DR . Neonatal lesion of rat ventral hippocampus result in hyperlocomotion and deficits in social behavior in adulthood Psychopharmacology 1997 132: 303–310

    Article  CAS  Google Scholar 

  49. Lipska BK, Weinberger DR . Subchronic treatment with haloperidol and clozapine in rats with neonatal excitotoxic hippocampal damage Neuropsychopharmacology 1994 10: 199–205

    Article  CAS  Google Scholar 

  50. Chambers RA, Moore J, McEvoy JP, Levine ED . Cognitive effects of neonatal hippocampal lesion in a rat model of schizophrenia Neuropsychopharmacology 1996 15: 587–594

    Article  CAS  Google Scholar 

  51. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates Academic Press: New York 1996

    Google Scholar 

  52. Benes FM . Neurobiological investigations in cingulate cortex of schizophrenic brain Schizophr Bull 1993 19: 537–549

    Article  CAS  Google Scholar 

  53. Chomczynski P, Sacchi N . Single step method of RNA isolation by guanidium thiocyanate-choroform extraction Anal Biochem 1987 162: 156–159

    Article  CAS  Google Scholar 

  54. Bertolino A, Roffman JL, Lipska BK, Van Gelderen P, Olson A, Weinberger DR . Postpubertal emergence of prefrontal neuronal deficits and alterated dopaminergic behaviors in rats with neonatal hippocampal lesions Soc Neurosci Abs 1999 520: 8

    Google Scholar 

  55. O'Donnell P, Lewis BL, Lerman D, Weinberger DR, Lipska BK . Effects of neonatal hippocampal lesions on prefrontal cortical pyramidal cell responses to VTA stimulation Soc Neurosci Abs 1999 664: 2

    Google Scholar 

  56. Leff J . Stress reduction in the social environment of schizophrenic patients Acta Psychiatr Scand Suppl 1994 384: 133–139

    Article  CAS  Google Scholar 

  57. Norman RMG, Malla AK . Stressful life events and schizophrenia: a review of the research Br J Psychiatry 1993 162: 161–166

    Article  CAS  Google Scholar 

  58. Kane JM . Treatment of schizophrenia Schizophr Bull 1987 13: 133–156

    Article  CAS  Google Scholar 

  59. Feenstra MG, Botterblom MH, van Uum JF . Novelty-induced increase in dopamine release in the rat prefrontal cortex in vivo: inhibition by diazepam Neurosci Lett 1995 189: 81–84

    Article  CAS  Google Scholar 

  60. Lillrank SM, Lipska BK, Kolachana BS, Weinberger DR . Attenuated extracellular dopamine levels after stress and amphetamine in the nucleus accumbens of rats with neonatal ventral hippocampal damage J Neural Transm 1999 106: 183–196

    Article  CAS  Google Scholar 

  61. Bagley J, Moghaddam B . Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam Neuroscience 1997 77: 65–73

    Article  CAS  Google Scholar 

  62. Olney JW, Farber NB . Glutamate receptor dysfunction and schizophrenia Arch Gen Psychiatry 1995 52: 998–1007

    Article  CAS  Google Scholar 

  63. Jentsch JD, Roth RH . The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia Neuropsychopharmacology 1999 20: 201–225

    Article  CAS  Google Scholar 

  64. Takahata R, Moghaddam B . Glutamatergic regulation of basal and stimulus-activated dopamine release in the prefrontal cortex J Neurochem 1998 71: 1443–1449

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Drs A Baird, and G Yankopoulos for their generous gift of cDNA probes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Riva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molteni, R., Lipska, B., Weinberger, D. et al. Developmental and stress-related changes of neurotrophic factor gene expression in an animal model of schizophrenia. Mol Psychiatry 6, 285–292 (2001). https://doi.org/10.1038/sj.mp.4000865

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000865

Keywords

This article is cited by

Search

Quick links