Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Human homolog of the mouse imprinted gene Impact resides at the pericentric region of chromosome 18 within the critical region for bipolar affective disorder

Abstract

Several mapping studies of families with multiple individuals who have bipolar affective disorder (BPAD) have demonstrated possible linkage of the trait to the pericentric region of chromosome 18 (18cen). Currently, the large size of the critical interval defined by these studies makes effective selection of candidate genes formidable. However, documentation of 18cen-linked families in which a parent-of-origin effect was observed in the transmission of the BPAD trait provides a clue to the nature of the putative gene; it may be imprinted. In the present study, we cloned IMPACT, the human homolog of the mouse imprinted gene Impact and mapped it to 18cen within the critical interval for BPAD. Human IMPACT encodes a protein with 320 amino acids and is expressed at high levels in the brain. Since only a small number of imprinted genes are estimated to be present in the entire genome, very few imprinted genes would be expected to be present in this particular chromosomal region. Hence, IMPACT represents a candidate gene for BPAD susceptibility. Alternatively, other as yet unknown imprinted gene(s) adjacent to IMPACT could contribute to the BPAD trait, since multiple imprinted genes may occasionally form clusters. Localization of human IMPACT at 18cen in this study defines a promising target region in which to search for putative BPAD genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Craddock N, Jones I . Genetics of bipolar disorder J Med Genet 1999 36: 585–594

    Article  CAS  Google Scholar 

  2. Blackwood DH, He L, Morris SW, McLean A, Whitton C, Thomson M et al. A locus for bipolar affective disorder on chromosome 4p Nat Genet 1996 12: 427–430

    Article  CAS  Google Scholar 

  3. Ewald H, Degn B, Mors O, Kruse TA . Significant linkage between bipolar affective disorder and chromosome 12q24 Psychiatr Genet 1998 8: 131–140

    Article  CAS  Google Scholar 

  4. Berrettini WH, Ferraro TN, Goldin LR, Weeks DE, Detera-Wadleigh S, Nurnberger JI Jr et al. Chromosome 18 DNA markers and manic-depressive illness: evidence for a susceptibility gene Proc Natl Acad Sci USA 1994 91: 5918–5921

    Article  CAS  Google Scholar 

  5. Badner JA, Goldin LR . Bipolar disorder and chromosome 18: an analysis of multiple data sets Genet Epidemiol 1997 14: 569–574

    Article  CAS  Google Scholar 

  6. Berrettini WH, Ferraro TN, Goldin LR, Detera-Wadleigh SD, Choi H, Muniec D et al. A linkage study of bipolar illness Arch Gen Psychiatry 1997 54: 27–35

    Article  CAS  Google Scholar 

  7. Turecki G, Grof P, Cavazzoni P, Duffy A, Grof E, Martin R et al. Lithium responsive bipolar disorder, unilineality, and chromosome 18: a linkage study Am J Med Genet 1999 88: 411–415

    Article  CAS  Google Scholar 

  8. Straub RE, Lehner T, Luo Y, Loth JE, Shao W, Sharpe L et al. A possible vulnerability locus for bipolar affective disorder on chromosome 21q22.3 Nat Genet 1994 8: 291–296

    Article  CAS  Google Scholar 

  9. Detera-Wadleigh SD, Badner JA, Berrettini WH, Yoshikawa T, Goldin LR, Turner G et al. A high-density genome scan detectsevidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2 Proc Natl Acad Sci USA 1999 96: 5604–5609

    Article  CAS  Google Scholar 

  10. Van Broeckhoven C, Verheyen G . Report of the chromosome 18 workshop Am J Med Genet 1999 88: 263–270

    Article  CAS  Google Scholar 

  11. Kato T, Winokur G, Coryell W, Keller MB, Endicott J, Rice J . Parent-of-origin effect in transmission of bipolar disorder Am J Med Genet 1996 67: 546–550

    Article  CAS  Google Scholar 

  12. Knowles JA, Rao PA, Cox-Matise T, Loth JE, de Jesus GM, Levine L et al. No evidence for significant linkage between bipolar affective disorder and chromosome 18 pericentromeric markers in a large series of multiplex extended pedigrees Am J Hum Genet 1998 62: 916–924

    Article  CAS  Google Scholar 

  13. Baron M . Genetic linkage and bipolar affective disorder: progress and pitfalls Mol Psychiatry 1997 2: 200–210

    Article  CAS  Google Scholar 

  14. Friddle C, Koskela R, Ranade K, Hebert J, Cargill M, Clark CD et al. Full-genome scan for linkage in 50 families segregating the bipolar affective disease phenotype Am J Hum Genet 2000 66: 205–215

    Article  CAS  Google Scholar 

  15. Collins JS, Go RC . Disease classification and transmission effects on linkage analyses in the NIMH1 bipolar disorder pedigrees Genet Epidemiol 1997 14: 587–592

    Article  CAS  Google Scholar 

  16. McMahon FJ, Stine OC, Meyers DA, Simpson SG, DePaulo JR . Patterns of maternal transmission in bipolar affective disorder Am J Hum Genet 1995 56: 1277–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  17. McMahon FJ, Hopkins PJ, Xu J, McInnis MG, Shaw S, Cardon L et al. Linkage of bipolar affective disorder to chromosome 18 markers in a new pedigree series Am J Hum Genet 1997 61: 1397–1404

    Article  CAS  Google Scholar 

  18. Stine OC, Xu J, Koskela R, McMahon FJ, Gschwend M, Friddle C et al. Evidence for linkage of bipolar disorder to chromosome 18 with a parent-of-origin effect Am J Hum Genet 1995 57: 1384–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hagiwara Y, Hirai M, Nishiyama K, Kanazawa I, Ueda T, Sakaki Y et al. Screening for imprinted genes by allelic message display: identification of a paternally expressed gene impact on mouse chromosome 18 Proc Natl Acad Sci USA 1997 94: 9249–9254

    Article  CAS  Google Scholar 

  20. Koonin EV, Bork P, Sander C . Yeast chromosome III: new gene functions Embo J 1994 13: 493–503

    Article  CAS  Google Scholar 

  21. Pearsall RS, Plass C, Romano MA, Garrick MD, Shibata H, Hayashizaki Y et al. A direct repeat sequence at the Rasgrf1 locus and imprinted expression Genomics 1999 55: 194–201

    Article  CAS  Google Scholar 

  22. Cox DR, Burmeister M, Price ER, Kim S, Meyers RM . Radiation hybrid mapping: a somatic cell genetic method for constructing high resolution maps of mammalian chromosomes Science 1990 250: 245–250

    Article  CAS  Google Scholar 

  23. Pearsall RS, Shibata H, Brozowska A, Yoshino K, Okuda K, deJong PJ et al. Absence of imprinting in U2AFBPL, a human homologue of the imprinted mouse gene U2afbp-rs Biochem Biophys Res Commun 1996 222: 171–177

    Article  CAS  Google Scholar 

  24. Kalscheuer VM, Mariman EC, Schepens MT, Rehder H, Ropers HH . The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans Nat Genet 1993 5: 74–78

    Article  CAS  Google Scholar 

  25. Nicholls RD . The impact of genomic imprinting for neurobehavioral and developmental disorders J Clin Invest 2000 105: 413–418

    Article  CAS  Google Scholar 

  26. Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA . Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest Nat Genet 1998 20: 163–169

    Article  CAS  Google Scholar 

  27. Keverne EB . Genomic imprinting in the brain Curr Opin Neurobiol 1997 7: 463–468

    Article  CAS  Google Scholar 

  28. Ashley-Koch A, Wolpert CM, Menold MM, Zaeem L, Basu S, Donnelly SL et al. Genetic studies of autistic disorder and chromosome 7 Genomics 1999 61: 227–236

    Article  CAS  Google Scholar 

  29. Reik W, Maher ER . Imprinting in clusters: lessons from Beckwith–Wiedemann syndrome Trends Genet 1997 13: 330–334

    Article  CAS  Google Scholar 

  30. Schwab SG, Hallmayer J, Lerer B, Albus M, Borrmann M, Honig S et al. Support for a chromosome 18p locus conferring susceptibility to functional psychoses in families with schizophrenia, by association and linkage analysis Am J Hum Genet 1998 63: 1139–1152

    Article  CAS  Google Scholar 

  31. Avissar S, Schreiber G, Danon A, Belmaker RH . Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex Nature 1988 331: 440–442

    Article  CAS  Google Scholar 

  32. Nothen MM, Cichon S, Rohleder H, Hemmer S, Franzek E, Fritze J et al. Evaluation of linkage of bipolar affective disorder to chromosome 18 in a sample of 57 German families Mol Psychiatry 1999 4: 76–84

    Article  CAS  Google Scholar 

  33. Bartolomei MS, Zemel S, Tilghman SM . Parental imprinting of the mouse H19 gene Nature 1991 351: 153–155

    Article  CAS  Google Scholar 

  34. Zemel S, Bartolomei MS, Tilghman SM . Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2 Nat Genet 1992 2: 61–65

    Article  CAS  Google Scholar 

  35. Hayward BE, Moran V, Strain L, Bonthron DT . Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins Proc Natl Acad Sci USA 1998 95: 15475–15480

    Article  CAS  Google Scholar 

  36. Peters J, Wroe SF, Wells CA, Miller HJ, Bodle D, Beechey CV et al. A cluster of oppositely imprinted transcripts at the Gnas locus in the distal imprinting region of mouse chromosome 2 Proc Natl Acad Sci USA 1999 96: 3830–3835

    Article  CAS  Google Scholar 

  37. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG . The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools Nucleic Acids Res 1997 24: 4876–4882

    Article  Google Scholar 

  38. Benson G . Tandem repeats finder: a program to analyze DNA sequences Nucleic Acids Res 1999 27: 573–580

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Pharmacia-Upjohn Fund for Growth & Development Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Kosaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosaki, K., Suzuki, T., Kosaki, R. et al. Human homolog of the mouse imprinted gene Impact resides at the pericentric region of chromosome 18 within the critical region for bipolar affective disorder. Mol Psychiatry 6, 87–91 (2001). https://doi.org/10.1038/sj.mp.4000799

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000799

Keywords

This article is cited by

Search

Quick links