Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metaplasticity at identified inhibitory synapses in Aplysia

Abstract

Synaptic plasticity is an important feature of neural networks involved in the encoding of information. In the analysis of long-term potentiation and long-term depression, several examples have emerged in which this plasticity is itself modulated1,2,3. This higher-order form of plasticity has been referred to as ‘metaplasticity’4, a modification of synapses reflected as a change in the ability to induce or maintain plasticity. These observations raise the question of the possible advantage of regulating the intrinsic plastic properties of a synapse. The neural circuit mediating the siphon withdrawal reflex in Aplysia provides a useful network in which to examine this question directly. Inhibitory synapses in this circuit (from L30 neurons) exhibit a variety of forms of activity-dependent short-term synaptic enhancement which contribute to dynamic gain control in the siphon withdrawal reflex5,6,7,8,9. Here we report that tail shock, an extrinsic modulatory input of known behavioural relevance, induces differential metaplasticity at this synapse, attenuating its ability to exhibit short-term synaptic enhancement after presynaptic activation (augmentation and post-tetanic potentiation), while leaving intact its capacity for enhancement during activation. This attenuation of inhibition at the synaptic level seems to mediate comparable attenuation of inhibitory modulation at both network and behavioural levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tail shock suppresses specific components of L30 short-term synaptic enhancement (STE).
Figure 2: Tail shock suppresses L30-mediated network inhibition.
Figure 3: Tail shock suppresses inhibitory modulation in intact, freely behaving animals.
Figure 4: Possible cellular mechanisms of the suppression of augmentation/PTP in L30.
Figure 5: Possible cellular mechanisms of the suppression of augmentation/PTP in L30.

Similar content being viewed by others

References

  1. Kirkwood, A., Rioult, M. G. & Bear, M. F. Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381, 526–528 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Demendonca, A. & Ribeiro, J. A. Adenosine and neuronal plasticity. Life Sci. 60, 245–251 (1996).

    Article  Google Scholar 

  3. Kaneko, S., Maeda, T. & Satoh, M. Cognitive enhancers and hippocampal long-term potentiation in vitro. Behav. Brain Res. 83, 45–49 (1997).

    Article  CAS  Google Scholar 

  4. Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996).

    Article  CAS  Google Scholar 

  5. Fischer, T. M. & Carew, T. J. Activity dependent recurrent inhibition: A mechanism for dynamic gain control in the siphon withdrawal reflex of Aplysia. J. Neurosci. 13, 1302–1314 (1993).

    Article  CAS  Google Scholar 

  6. Fischer, T. M. & Carew, T. J. Cutaneous activation of the inhibitory L30 interneurons provides a mechanism for regulating adaptive gain control in the siphon withdrawal reflex of Aplysia. J. Neurosci. 15, 762–773 (1995).

    Article  CAS  Google Scholar 

  7. Fisher, S. A., Fischer, T. M. & Carew, T. J. Multiple overlapping processes underlying short-term synaptic enhancement. Trends Neurosci. 20, 170–177 (1997).

    Article  CAS  Google Scholar 

  8. Blazis, D. E. J., Fischer, T. M. & Carew, T. J. Aneural network model of inhibitory information processing in Aplysia. Neural Computat. 5, 213–227 (1993).

    Article  Google Scholar 

  9. Lieb, J. R. & Frost, W. N. Realistic simulation of the Aplysia siphon withdrawal circuit: Roles of circuit elements in producing motor output. J. Neurophysiol. 77, 1249–1268 (1997).

    Article  Google Scholar 

  10. Frost, W. N., Clark, G. A. & Kandel, E. R. Parallel processing of short-term memory for sensitization in Aplysia. J. Neurobiol. 19, 297–334 (1988).

    Article  CAS  Google Scholar 

  11. Marcus, E. A., Nolen, T. G., Rankin, C. H. & Carew, T. J. Behavioral dissociation of dishabituation, sensitization, and inhibition of Aplysia. Science 241, 210–213 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Zucker, R. S. Exocytosis: A molecular and physiological perspective. Neuron 17, 1049–1055 (1996).

    Article  CAS  Google Scholar 

  13. Zucker, R. S. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (1989).

    Article  CAS  Google Scholar 

  14. Fischer, T. M., Zucker, R. S. & Carew, T. J. Activity-dependent potentiation of synaptic transmission from L30 inhibitory interneurons of Aplysia depends upon residual presyanptic calcium but not on postsynaptic calcium. J. Neurophysiol.(in the press).

  15. Kamiya, H. & Zucker, R. S. Residual Ca2+ and short-term synaptic plasticity. Nature 371, 603–606 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Brunelli, M., Castellucci, V. & Kandel, E. R. Synaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cyclic AMP. Science 194, 1178–1180 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Fitzgerald, K. & Carew, T. J. Serotinin mimics tail shock in producing transient inhibition in the siphon withdrawal reflex of Aplysia. J. Neurosci. 11, 2510–2518 (1991).

    Article  CAS  Google Scholar 

  18. Walters, E. T. Afunctional, cellular, and evolutionary model of nocioceptive plasticity in Aplysia. Biol. Bull. 180, 241–251 (1991).

    Article  CAS  Google Scholar 

  19. Mercer, A. R., Emptage, N. J. & Carew, T. J. Pharmacological dissociation of modulatory effects of serotonin in Aplysia sensory neurons. Science 254, 1811–1813 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Glanzman, D. L. et al. Depletion of serotonin in the nervous system of Aplysia reduces the behavioral enhancement of gill withdrawal as well as the heterosynaptic facilitation producted by tail shock. J. Neurosci. 9, 4200–4213 (1989).

    Article  CAS  Google Scholar 

  21. Abrams, T. W., Castellucci, V. F., Camardo, J. S., Kandel, E. R. & Lloyd, P. E. Two endogenous neuropeptides modulate the gill and siphon withdrawal reflex in Aplysia by presynaptic facilitation involving c-AMP dependent closure of a serotonin-sensitive potassium channel. Proc. Natl Acad. Sci. USA 81, 7956–7960 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Katz, B. & Miledi, R. The role of calcium in neuromuscular facilitation. J. Physiol. (Lond.) 195, 481–492 (1968).

    Article  CAS  Google Scholar 

  23. Delaney, K. R. & Tank, D. W. Aquantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium. J. Neurosci. 14, 5885–5902 (1994).

    Article  CAS  Google Scholar 

  24. Carew, T. J., Hawkins, R. D. & Kandel, E. R. Differential classical conditioning of a defensive withdrawal reflex in Aplysia californica. Science 219, 397–400 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Emptage, N. J. & Carew, T. J. Long-term synaptic facilitation in the absence of short-term facilitation in Aplysia neurons. Science 262, 253–256 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Hawkins, R. D., Castellucci, V. F. & Kandel, E. R. Interneurons invovled in mediation and modulation of gill-withdrawal reflex in Aplysia. I. Identification and characterization. J. Neurophysiol. 45, 304–314 (1981).

    Article  CAS  Google Scholar 

  27. Hickie, C. & Walters, E. T. Motor neuronal control of tail-directed and head-directed siphon responses in Aplysia californica. J. Neurophysiol. 74, 307–321 (1995).

    Article  CAS  Google Scholar 

  28. Hawkins, R. D. & Schacher, S. Identified facilitator neurons L29 and L28 are excited by cutaneous stimuli used in dishabituation, sensitization, and classical conditioning of Aplysia. J. Neurosci. 9, 4236–4245 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. McKay and C. Sherff for comments on earlier versions of this manuscript, and P. Hofstadter for animal care and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Carew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, T., Blazis, D., Priver, N. et al. Metaplasticity at identified inhibitory synapses in Aplysia. Nature 389, 860–865 (1997). https://doi.org/10.1038/39892

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39892

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing