Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protein memory through altered folding mediated by intramolecular chaperones

Abstract

The 77-residue propeptide of subtilisin acts as an intramolecular chaperone that organizes the correct folding of its own protease domain. Similar folding mechanisms are used by several prokaryotic and eukaryotic proteins, including prohormone-convertases. Here we show that the intramolecular chaperone of subtilisin facilitates folding by acting as a template for its protease domain, although it does not form part of that domain. Subtilisin E folded by an intramolecular chaperone with an Ile(−48)-to-Val mutation acquires an ‘altered’ enzymatically active conformation that differs from wild-type subtilisin E. Although both the altered and wild-type subtilisins have identical amino-acid sequences, as determined by amino-terminal sequencing and mass spectrometry, they bind their cognate intramolecular chaperones with 4.5-fold greater affinity than non-cognate intramolecular chaperones, when added in trans. The two subtilisins also have different secondary structures, thermostability and substrate specificities. Our results indicate that an identical polypeptide can fold into an altered conformation through a mutated intramolecular chaperone and maintains memory of the folding process. Such a phenomenon, which we term ‘protein memory’, may be important in investigations of protein folding.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Maturation of wild-type (WT) and Ile(−48)Val mutant pro-subtilisin.
Figure 2: Comparison of inhibition profiles of SubWT and SubPC.
Figure 3: Comparison of inhibition profiles of SubWT and SubPC.

Similar content being viewed by others

References

  1. Anfinsen, C. R. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Kim, P. S. & Baldwin, R. L. Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631–660 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Ikemura, H., Takagi, H. & Inouye, M. Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J. Biol. Chem. 262, 7859–7864 (1988).

    Google Scholar 

  4. Ikemura, H. & Inouye, M. In vitro processing of pro-subtilisin produced in Escherichia coli. J. Biol. Chem. 263, 12959–12963 (1988).

    CAS  PubMed  Google Scholar 

  5. Winther, J. R. & Sorensen, P. Propeptide of carboxypeptidase Y provides a chaperone-like function as well as inhibition of the enzymatic activity. Proc. Natl Acad. Sci. USA 88, 9330–9334 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Richo, G. R. & Conner, G. E. Structural requirements of procathepsin D activation and maturation. J. Biol. Chem. 269, 14806–14812 (1994).

    CAS  PubMed  Google Scholar 

  7. Shinde, U., Li, Y., Chatterjee, S. & Inouye, M. Folding pathway mediated by an intramolecular chaperone. Proc. Natl Acad. Sci. USA 90, 6924–6928 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Zhu, X., Ohta, Y., Jordan, F. & Inouye, M. Pro-sequence of subtilisin can guide the folding of denatured subtilisin in an intermolecular process. Nature 339, 483–484 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Eder, J., Rheinnecker, M. & Fersht, A. Folding of subtilisin BPN′: role of the pro-sequence. J. Mol. Biol. 233, 293–304 (1993).

    Article  CAS  Google Scholar 

  10. Strausberg, S., Alexander, P., Wang, L., Schwarz, F. & Bryan, P. Catalysis of a protein folding reaction: thermodynamic and kinetic analysis of subtilisin BPN′ interactions with its propeptide fragment. Biochemistry 32, 8112–8119 (1993).

    Article  CAS  Google Scholar 

  11. Silen, J. L. & Agard, D. A. The α-lytic protease pro-region does not require a physical linkage to activate the protease domain in vivo. Nature 341, 362–264 (1989).

    Article  Google Scholar 

  12. Lee, Y. C., Ohta, T. & Matsuzawa, H. Anon-covalent NH2-terminal pro-region aids the production of active aqualysin I (a thermophilic protease) without the COOH-terminal pro-sequence in Escherichia coli. FEMS Microbiol. Lett. 92, 73–78 (1992).

    Article  CAS  Google Scholar 

  13. Winther, J. R., Sorensen, P. & Kielland-Brandt, M. C. Refolding of a carboxypeptidase Y folding intermediate in vitro by low-affinity binding of the proregion. J. Biol. Chem. 269, 7006–7012 (1994).

    PubMed  Google Scholar 

  14. Shinde, U. P. & Inouye, M. Folding mediated by an intramolecular chaperone: autoprocessing pathway of the precursor resolved via a ‘substrate assisted catalysis’ mechanism. J. Mol. Biol. 247, 390–395 (1995).

    Article  CAS  Google Scholar 

  15. Eder, J., Rheinnecker, M. & Fersht, A. Folding of subtilisin BPN′: characterization of a folding intermediate. Biochemistry 32, 18–26 (1993).

    Article  CAS  Google Scholar 

  16. Shinde, U. P. & Inouye, M. Folding pathway mediated by an intramolecular chaperone: characterization of the structural changes in pro-subtilisin E coincident with autoprocessing. J. Mol. Biol. 252, 25–30 (1995).

    Article  CAS  Google Scholar 

  17. Baker, D., Sohl, J. L. & Agard, D. A. Aprotein-folding reaction under kinetic control. Nature 356, 263–265 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Eder, J. & Fersht, A. R. Pro-sequence assisted protein folding. Mol. Microbiol. 16, 609–614 (1995).

    Article  CAS  Google Scholar 

  19. Shinde, U. P. & Inouye, M. Intramolecular chaperones and protein folding. Trends Biochem. Sci. 18, 442–446 (1993).

    Article  CAS  Google Scholar 

  20. Bryan, P. in Intramolecular Chaperones and Protein Folding (eds Shinde, U. & Inouye, M.) 85–98 (R. G. Landes, Austin, TX, (1995)).

    Google Scholar 

  21. Kobayashi, T. & Inouye, M. Functional analysis of the intramolecular chaperone. Mutational hot spots in the subtilisin pro-peptide and a second-site suppressor mutation within the subtilisin molecule. J. Mol. Biol. 226, 931–933 (1992).

    Article  CAS  Google Scholar 

  22. Li, Y., Hu, Z., Jordan, F. & Inouye, M. Functional analysis of the propeptide of subtilisin E as an intramolecular chaperone for protein folding, purification and characterization of mutant propeptides. J. Biol. Chem. 270, 25127–25132 (1995).

    Article  CAS  Google Scholar 

  23. Bryan, P. et al. Catalysis of a protein folding reaction: mechanistic implications of the 2.0 A structure of the subtilisin-prodomain complex. Biochemistry 34, 10310–10318 (1995).

    Article  CAS  Google Scholar 

  24. Jackson, S. E. & Fersht, A. R. Contribution of residues in the reactive site loop of chymotrypsin inhibitor 2 to protein stability and activity. Biochemistry 32, 13909–13916 (1993).

    Article  CAS  Google Scholar 

  25. Longstaff, C., Campbell, A. & Fersht, A. R. Recombinant chymotrypsin inhibitor 2: expression, kinetics analysis of inhibition fiwht a-chymotrypsin and wild-type and mutant subtilisin BPN′ and protein engineering to investigate inhibitory specificity and mechanism. Biochemistry 29, 7339–7347 (1990).

    Article  CAS  Google Scholar 

  26. Mathews, B. W. Studies on protein stability with T4 lysozyme. Adv. Protein Chem. 462, 240–311 (1995).

    Google Scholar 

  27. Russel, A. J. & Fersht, A. R. Rational modification of enzyme catalysis by engineering surface charge. Nature 328, 496–500 (1987).

    Article  ADS  Google Scholar 

  28. Russell, A. J. & Klibanov, A. M. Inhibitor induced enzyme activation in organic solvents. J. Biol. Chem. 262, 11624–11626 (1988).

    Google Scholar 

  29. Klibanov, A. M. What is remembered and why? Nature 374, 596 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Barr, P. Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell 66, 1–3 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Chait and U. Mirza for mass spectroscopy, and K. Madura, K. Chada, H.Berman and B. Brodsky for discussions and for reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Inouye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinde, U., Liu, J. & Inouye, M. Protein memory through altered folding mediated by intramolecular chaperones. Nature 389, 520–522 (1997). https://doi.org/10.1038/39097

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39097

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing