Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation

Abstract

Ataxia telangiectasia (AT) is a rare human autosomal recessive disorder with pleiotropic phenotypes, including neuronal degeneration, immune dysfunction, premature ageing and increased cancer risk. The gene mutated in AT, ATM, encodes a putative lipid or protein kinase1,2. Most of the human AT patient phenotypes are recapitulated in Atm-deficient mice3,4. Cells derived from Atm-/- mice, like those from AT patients, exhibit abnormal response to ionizing radiation3,5,6. One of the known responses to ionizing radiation is the activation of a nuclear tyrosine kinase encoded by the c-abl/proto-oncogene7,8. Ionizing radiation does not activate c-Abl in cells from AT patients or in thymocytes or fibroblasts from the Atm-deficient mice. Ectopic expression of a functional ATM kinase domain corrects this defect, as it phosphorylates the c-Abl tyrosine kinase in vitro at Ser 465, leading to the activation of c-Abl. A mutant c-Abl with Ser 465 changed to Ala 465 is not activated by ionizing radiation or ATM kinase in vivo. These findings identify the c-Abl tyrosine kinase as a downstream target of phosphorylation and activation by the ATM kinase in the cellular response to ionizing radiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Savitsky, K. et al. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum. Mol. Genet. 4, 2025–2032 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Xu, Y. et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects and thymic lymphoma. Genes Dev. 10, 2411–2422 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Xu, Y. & Baltimore, D. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev. 10, 2401–2410 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Kastan, M. B. et al. A mammalian cell cycle checkpoint utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, Z. G. et al. Three distinct signalling responses by murine fibroblasts to genotoxic stress. Nature 384, 273–276 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Kharbanda, S. et al. Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature 376, 785–788 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Canman, C. E., Wolff, A. C., Chen, C. Y., Fornace, A. J. & Kastan, M. B. The p53-dependent Gl cell cycle checkpoint pathway and ataxia-telangiectasia. Cancer Res. 54, 5054–5058 (1994).

    CAS  PubMed  Google Scholar 

  10. Lu, X. & Lane, D. P. Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell 75, 765–778 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Khanna, K. K. & Lavin, M. F. Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene 8, 3307–3312 (1993).

    CAS  PubMed  Google Scholar 

  12. Baskaran, R., Chiang, G. G. & Wang, J. Y. J. Identification of a binding site in c-Abl tyrosine kinase for the C-terminal repeated domain of RNA polymerase II. Mol. Cell. Biol. 16, 3361–3369 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Siede, W., Alien, J. B., Elledge, S. J. & Friedberg, E. C. The Saccharomyces cerevisiae MECl gene, which encodes a homolog of the human ATM gene product, is required for G1 arrest following radiation treatment. J. Bacteriol. 178, 5841–5843 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Byrd, P. J. et al. Mutations revealed by sequencing the 5' half of the gene for ataxia-telangiectasia. Hum. Mol. Genet. 5, 145–149 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Gilad, S. et al. Ataxia-telangiectasia: predominance of mutations that inactivate the ATM protein by truncations or large deletions. Hum. Mol. Genet. 5, 433–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Morgan, S. E., Lovly, C., Pandita, T. K., Shiloh, Y. & Kastan, M. B. Fragments of ATM which have dominant-negative or complementing activity. Mol. Cell. Biol. 17, 2020–2029 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bannister, A. J., Gottlieb, T. M., Kouzarides, T. & Jackson, S. P. c-Jun is phosphorylated by the DNA-dependent protein kinase in vitro-definition of the minimal kinase recognition motif. Nucleic Acids Res. 2l, 1289–1295 (1993).

    Article  Google Scholar 

  18. Baskaran, R., Dahmus, M. E. & Wang, J. Y. J. Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain. Proc. Natl Acad. Sci. USA 90, 11167–11171 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yuan, Z.-M. et al. Role of c-Abl tyrosine kinase in growth arrest response to DNA damage. Nature 382, 272–274 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Painter, R. B. & Young, B. R. Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc. Natl Acad. Sci. USA 77, 7315–7317 (1980).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fornace, A. J. et al. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol. Cell. Biol. 9, 4196–4203 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Friedberg, E. C., Walker, G. C. & Siede, W. DNA Repair and Mutagenesis (ASM, Washington DC, 1995).

    Google Scholar 

  23. Sanchez, Y. et al. Regulation of RAD53 by the ATM-like kinases Mecl and Tell in yeast cell cycle checkpoint pathways. Science 271, 357–360 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Welch, P. J. & Wang, J. Y. J. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell 75, 779–790 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Leonardo, A. D., Linke, S. P., Clarkin, K. & Wahl, G. M. DNA damage triggers a prolonged p53-dependent Gl arrest and long-term induction of Cipl in normal human fibroblasts. Genes Dev. 8, 2540–2551 (1994).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baskaran, R., Wood, L., Whitaker, L. et al. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature 387, 516–519 (1997). https://doi.org/10.1038/387516a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387516a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing