Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion

Abstract

Integrins are important mediators of cell adhesion to extracellular ligands and can transduce biochemical signals both into and out of cells1,2. The cytoplasmic domains of integrins interact with several structural and signalling proteins and consequently participate in the regulation of cell shape, motility, growth and differentiation3. It has been shown that calreticulin associates with the cytoplasmic domains of integrin α-subunits and that this interaction can influence integrin-mediated cell adhesion to extracellular matrix4,5. We have now developed calreticulin-deficient embryonic stem (ES) cells and isolated embryonic fibro-blasts from calreticulin mutant mice. We find that in both cell types integrin-mediated adhesion is severely impaired, although integrin expression is unaltered. Expression of recombinant calreticulin in double knockout ES cells by complementary DNA transfection rescued integrin-mediated adhesion. In wild-type cells, engagement of surface integrins induced a transient elevation in cytosolic calcium concentration owing to influx of extracellular calcium. This calcium transient was absent in calreticulin-deficient cells. In contrast, the amount of calcium in endomembrane stores, which is sensitive to both inositol 1,4,5-trisphosphate and thapsigargin, was indistinguishable in the two cell types. Our results indicate that calreticulin is an essential modulator both of integrin adhesive functions and integrin-initiated signalling, but that it may not play a significant role in the storage of luminal calcium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hynes, R. O. Integrins: versatility, modulation, and signalling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  Google Scholar 

  2. Schwartz, M. A., Schaller, M. D. & Ginsberg, M. H. Integrins: Emerging paradigms of signal transduction. Annu. Rev. Cell Biol. and Dev. Biol. 11, 549–600 (1995).

    Article  CAS  Google Scholar 

  3. Dedhar, S. & Hannigan, G. E. Integrin cytoplasmic interactions and bidirectional transmembrane signalling. Curr. Opin. Cell Biol. 8, 657–669 (1996).

    Article  CAS  Google Scholar 

  4. Coppolino, M. G. et al. Inducible interaction of integrin α2β1 with calreticulin: dependence on the activation state of the integrin. J. Biol. Chem. 270, 23132–23138 (1995).

    Article  CAS  Google Scholar 

  5. Leung-Hagesteijn, C. et al. Cell attachment to extracellular matrix substrates is inhibited upon downregulation of expression of calreticulin, an intracellular integrin α-subunit-binding protein. J. Cell. Sci. 107, 589–600 (1994).

    CAS  PubMed  Google Scholar 

  6. Mansour, S. L. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy of targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Capecchi, M. The new mouse genetics: altering the genome by gene targeting. Trends Genet. 5, 70–76 (1989).

    Article  CAS  Google Scholar 

  8. Michalak, M. et al. Calreticulin. Biochem. J. 285, 681–692 (1992).

    Article  CAS  Google Scholar 

  9. Camacho, P. & Lechleiter, J. D. Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell 82, 765–771 (1995).

    Article  CAS  Google Scholar 

  10. Mery, L. et al. Overexpression of calreticulin increases intracellular Ca2+ -storage and decreases store-operated Ca2+ influx. J. Biol. Chem. 271, 9332–9339 (1996).

    Article  CAS  Google Scholar 

  11. von Tscharner, V., Deranleau, D. A. & Baggioloni, M. Calcium fluxes and calcium buffering in human neutrophils. J. Biol. Chem. 261, 10163–10168 (1986).

    CAS  PubMed  Google Scholar 

  12. Jalink, K. et al. Lysophosphatidic acid-induced Ca2+ mobilization in human A431 cells: structure-activity analysis. Biochem. J. 307, 609–616 (1995).

    Article  CAS  Google Scholar 

  13. Liu, N. et al. Decreasing calreticulin expression lowers the Ca2+ response to bradykinin and increases sensitivity to ionomycin in NG-108-15 cells. J. Biol. Chem. 269, 28635–28639 (1994).

    CAS  PubMed  Google Scholar 

  14. Bastianutto, C. et al. Overexpression of calreticulin increases the Ca2+ capacity of rapidly exchanging Ca2+ stores and reveals aspects of their lumenal microenvironment and function. J. Cell Biol. 130, 847–855 (1995).

    Article  CAS  Google Scholar 

  15. Schwartz, M. A. Spreading of human endothelial cells on fibronectin or vitronectin triggers elevation of intracellular free calcium. J. Cell Biol. 120, 1003–1010 (1993).

    Article  CAS  Google Scholar 

  16. Sjaastad, M. D., Lewis, R. S. & Nelson, W. J. Mechanisms of integrin-mediated calcium signaling in MDCK cells: regulation of adhesion by IP.3- and store-independent calcium influx. Mol. Biol. Cell 1, 1025–1041 (1996).

    Article  Google Scholar 

  17. Dedhar, S. Novel functions for calreticulin: interaction with integrins and modulation of gene expression? Trends Biochem. Sci. 19, 269–271 (1994).

    Article  CAS  Google Scholar 

  18. Sontheimer, R. D. et al. The unveiling of calreticulin—a clinically relevant tour of modern cell biology. J. Invest. Med. 43, 362–370 (1995).

    CAS  Google Scholar 

  19. Rojiani, M. V. et al. In vitro interaction of a polypeptide homologous to human RO/SS-A antigen (calreticulin) with a highly conserved amino-acid sequence in the cytoplasmic domain of integrin α-subunits. Biochemistry 30, 9859–9866 (1991).

    Article  CAS  Google Scholar 

  20. Williams, M. J. et al. The inner world of cell adhesion: integrin cytoplasmic domains. Trends Cell Biol. 4, 109–112 (1994).

    Article  CAS  Google Scholar 

  21. Opas, M. et al. Calreticulin modulates cell adhesiveness via regulation of vinculin expression. J. Cell Biol. 135, 1913–1923 (1996).

    Article  CAS  Google Scholar 

  22. Burns, K. et al. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 367, 476–480 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Dedhar, S. et al. Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367, 480–483 (1994).

    Article  ADS  CAS  Google Scholar 

  24. St Arnaud, R. et al. Constitutive expression of calreticulin in osteoblasts inhibits mineralization. J. Cell Biol. 131, 1351–1359 (1995).

    Article  CAS  Google Scholar 

  25. McCauliffe, D. P. et al. Molecular cloning, expression, and chromosome 19 localization of a human Ro/SS-A autoantigen. J. Clin. Invest. 86, 332–335 (1990).

    Article  CAS  Google Scholar 

  26. Rudnicki, M. A. et al. Inactivation of MyoD in mice leads to upregulation of the myogenic HLH gene myf-5 and results in apparently normal muscle development. Cell 71, 383–390 (1992).

    Article  CAS  Google Scholar 

  27. Hogan, B. Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory Press, New York, 1994).

    Google Scholar 

  28. Mortensen, R. M. Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12, 2391–2395 (1992).

    Article  CAS  Google Scholar 

  29. Miyake, K. et al. Evidence for a role of the integrin VLA-4 in lympho-hemopoiesis. J. Exp. Med. 173, 599–607 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coppolino, M., Woodside, M., Demaurex, N. et al. Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386, 843–847 (1997). https://doi.org/10.1038/386843a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386843a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing