Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Release of gelatinase A during platelet activation mediates aggregation

Abstract

Blood platelets limit blood loss at sites of vascular injury by forming a mechanical plug. They are also involved in thrombosis, atherosclerosis, inflammation and metastasis. Platelet activation is essential for these physiological and pathological reactions and depends upon their adhesion to the vessel wall and attachment to each other in the aggregation process. The two known pathways of aggregation are mediated by the release of endoperoxides/throm-boxane A2 and ADP1–3 which amplify platelet aggregation. Here we report the identification of a new pathway of aggregation which is mediated by the release of a metalloproteinase enzyme, gelatinase A.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Siess, W. Molecular mechanisms of platelet activation. Pharmacol. Rev. 69, 58–178 (1989).

    CAS  Google Scholar 

  2. Colman, R. W. Aggregin: a platelet ADP receptor that mediates activation. FASEB J. 4, 1425–1435 (1990).

    Article  CAS  Google Scholar 

  3. Sargeant, P. & Sage, S. O. Calcium signaling in platelet and other non-exictable cells. Pharmac. Ther. 64, 395–443 (1994).

    Article  CAS  Google Scholar 

  4. Ray, J. M. & Stetler-Stevenson, W. G. The role of matrix metalloproteases and their inhibitors in tumour invasion, metastasis and angiogenesis. Eur. Respir. J. 7, 2062–2072 (1994).

    CAS  PubMed  Google Scholar 

  5. Woessner, J. F. Jr in Inhibition of Matrix Metalloproteinases: Therapeutic Approach (eds Greenwald, R. A. & Golub, L M.) Vol. 732, 11–21 (Ann. NYAcad. Sci., New York, 1994).

    Google Scholar 

  6. Birkedal-Hansen, H. Proteolytic remodeling of extracellular matrix. Curr. Opin. Cell Biol. 7, 728–735 (1995).

    Article  CAS  Google Scholar 

  7. Libby, P. Molecular bases of the actue coronary syndromes. Circulation 91, 2844–2850 (1995).

    Article  CAS  Google Scholar 

  8. Petrequin, P. R., Tod, R. F. Devall, L. J., Boxer, L. A. & Curnutte, J. T. Association between gelatinase release and increased plasma membrane expression of the Mol glycoprotein. Blood 69, 605–610 (1987).

    CAS  PubMed  Google Scholar 

  9. Seltzer, J. L. et al. Activation of 72-kDa type IV collagenase/gelatinase by normal fibroblasts in collagen lattices is mediated by integrin receptors but is not related to lattice contraction. Exp. Cell Res. 213, 365–374 (1994).

    Article  CAS  Google Scholar 

  10. Salvesen, G. & Nagase, H. in Proteolytic Enzymes: a Practical Approach (eds Beynon, R. L. & Bond,}. S.) 83–104 (IRL, Oxford University Press, Oxford, New York and Tokyo, 1989).

    Google Scholar 

  11. Cruwys, S. C., Davies, D. E. & Pettipher, E. R. Co-operation between interleukin-1 and the fibrinolytic system in the degradation of collagen by articular chondrocytes. Br. J. Pharmacol. 100, 631–635 (1990).

    Article  CAS  Google Scholar 

  12. Sato, H. et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370, 61–65 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Chesney, C. M., Harper, E. & Colman, R. W. Human platelet collagenase. j. Clin Invest. 53, 1647–1654 (1974).

    Article  CAS  Google Scholar 

  14. Leven, R. M. & Yee, T. Collagenase production by guinea pig megakaryocytes in vitro. Exp. Hematol. 18, 743–747 (1990).

    CAS  PubMed  Google Scholar 

  15. Joseph, R., Welch, K. M. A., D'Andrea, G. & Riddle, J. M. Evidence for the presence of red and white cells within ‘platelet’ aggregates formed in whole-blood. Thromb. Res. 53, 485–491 (1989).

    Article  CAS  Google Scholar 

  16. Stetler-Stevenson, W. G., Krutzsch, H. C. & Liotta, L. A. Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J. Biol. Chem. 264, 17374–17379 (1989).

    CAS  PubMed  Google Scholar 

  17. Goldberg, G. I. et al. Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc. Natl Acad. Sci. USA 86, 8207–8211 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Vane, J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature (New Biol.) 231, 232–235 (1971).

    Article  CAS  Google Scholar 

  19. Komoszynski, M. & Wojtczak, A. Apyrases (ATP diphosphohydrolases, EC 3.6.1.5): function and relationship to ATPases. Biochim. Biophys. Acta 1310, 233–241 (1996).

    Article  Google Scholar 

  20. Herron, G. S., Werb, Z., Dwer, K. & Banda, M. J. Secretion of metalloproteinases by stimulated capillary endothelial cells. I. Production of procollagenase and prostromelysin exceeds expression of proteolytic activity. J. Biol. Chem. 261, 2810–2813 (1986).

    CAS  PubMed  Google Scholar 

  21. Southgate, K. M., Davies, M., Booth, R. F. & Newby, A. C. Involvement of extracellular-matrix-degrading metalloproteinases in rabbit aortic smooth-muscle cell proliferation. Biochem. J. 288, 93–99 (1992).

    Article  CAS  Google Scholar 

  22. Henney, A. M. et al. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc. Natl Acad. Sci. USA 88, 8154–8158 (1991).

    Article  ADS  CAS  Google Scholar 

  23. McEver, R. Leukocyte interactions mediated by selectins. Thromb. Haemost. 66, 80–87 (1991).

    Article  CAS  Google Scholar 

  24. Radomski, M. W. & Salas, E. in Nitric Oxide: a Modulator of Cell-Cell Interations in the Micro-circulation (ed. Kubes, P.) 43–74 (Springer, New York, 1995).

    Google Scholar 

  25. Radomski, M. W. & Moncada, S. An improved method for washing of human platelets with prostacyclin. Thromb. Res. 30, 383–389 (1983).

    Article  CAS  Google Scholar 

  26. Heussen, C. & Dowdle, E. B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analyt. Biochem. 102, 196–202 (1980).

    Article  CAS  Google Scholar 

  27. Zembowicz, A., Jones, S. L. & Wu, K. W. Induction of cyclooxygenase-2 in human umbilical vein endothelial cells by lysophosphatidylcholine. J. Clin. Invest. 96, 1688–1692 (1995).

    Article  CAS  Google Scholar 

  28. Goetzl, E. J., Banda, M. J. & Leppert, D. Matrix metalloproteinases in immunity. J. Immunol. 156, 1–4 (1996).

    CAS  PubMed  Google Scholar 

  29. Feinman, R. D., Detwiler, T. C. & Ingerman-Wojenski, C. in Platelets: Physiology and Pharmacology (ed. Longenecker, G. L.) 429–440 (Academic, New York, 1985).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawicki, G., Salas, E., Murat, J. et al. Release of gelatinase A during platelet activation mediates aggregation. Nature 386, 616–619 (1997). https://doi.org/10.1038/386616a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386616a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing