Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Perceived geometrical relationships affected by eye-movement signals

Abstract

To determine the location of visual objects relative to the observer, the visual system must take account not only of the location of the stimulus on the retina, but also of the direction of gaze1. In contrast, the perceived spatial relationship between visual stimuli is normally assumed to depend on retinal information alone, and not to require information about eye position. We now show, however, that the perceived alignment of three dots—tested by a vernier alignment task2,3—is systematically altered in the period immediately preceding a saccade. Thus, information about eye position can modify not only the perceived relationship of the entire retinal image to the observer, but also the relations between elements within the image. The processing of relative position and of egocentric (observer-centred) position may therefore be less distinct than previously believed4–6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grüsser, O.-J. Space perception and the gazemotor system. Hum. Neurobiol. 1, 73–76 (1982).

    PubMed  Google Scholar 

  2. Westheimer, G. Visual acuity and hyperacuity. Invest. Ophthal. 14, 570–572 (1975).

    CAS  PubMed  Google Scholar 

  3. Levi, D. M. & Klein, S. A. Limitations on position coding imposed by undersampling and univariance. Vision Res. 36, 2111–2120 (1996).

    Article  CAS  Google Scholar 

  4. Galletti, C. & Battaglini, P. P. Gaze-dependent visual neurons in area V3A of monkey prestriate cortex. J. Neurosci. 9, 1112–1125 (1989).

    Article  CAS  Google Scholar 

  5. Weyand, T. G. & Malpeli, J. C. Responses of neurons in primary visual cortex are modulated by eye position. J. Neurophysiol 69, 2258–2260 (1993).

    Article  CAS  Google Scholar 

  6. MacKay, D. M. in Handbook of Sensory Physiology (ed. Jung, R.) VII/3, 307–332 (Springer-Verlag, Berlin, 1973).

    Google Scholar 

  7. Matin, L. in Handbook of Sensory Physiology (eds Jameson, D. & Hurvich, L.) VII/4, 307–332 (Springer-Verlag, Berlin, 1972).

    Google Scholar 

  8. Honda, H. in Attention and Performance (ed. Jeannerod, M.) XIII, 567–582 (Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1990).

    Google Scholar 

  9. Honda, H. The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades. Vision Res. 31, 1915–1921 (1991).

    Article  CAS  Google Scholar 

  10. Schlag, J. & Schlag-Rey, M. Illusory localization of stimuli flashed in the dark before saccades. Vision Res. 35, 2347–2357 (1995).

    Article  CAS  Google Scholar 

  11. Ross, J., Morrone, M. C. & Burr, D. Nature 386, 598–601 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Volkmann, F. C., Schick, A. M. L. & Riggs, L. A. Time course of visual inhibition during voluntary saccades. J. Opt. Soc. Am. 58, 562–569 (1969).

    Article  ADS  Google Scholar 

  13. Posner, M. I. Orienting of attention. Quart. J. Exp. Psych. 32, 3–25 (1980).

    Article  CAS  Google Scholar 

  14. Westhiemer, G. & McKee, S. P. Spatial configurations for visual hyperacuity. vision Res. 17, 941–947 (1977).

    Article  Google Scholar 

  15. Groll, S. L. & Hirsch, J. Two-dot vernier discrimination within 2.0degrees of the foveal center. J. Opt. Soc. Am. A 4, 1535–1542 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Whitaker, D., Rovamo, J., MacVeigh, D. & Makela, P. Spatial scaling of vernier acuity tasks. Vision Res. 32, 1481–1491 (1992).

    Article  CAS  Google Scholar 

  17. Levi, D. M. & Waugh, S. A. Spatial scale shifts in peripheral vernier acuity. Vision Res. 34, 2215–2238 (1994).

    Article  CAS  Google Scholar 

  18. Parker, A. & Hawken, M. Capabilities of monkey cortical cells in spatial-resolution tasks. J. Opt. Soc. Am. 2, 1101–1114 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Swindale, N. V. & Cynader, M. S. Vernier acuity of neurons in cat visual cortex. Nature 319, 591–593 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Shapley, R. & Victor, J. Hyperacuity in cat retinal ganglion cells. Science 231, 999–1002 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Fahle, M. & Poggio, T. Visual hyperacuity: spatiotemporal interpolation in human vision. Proc. R. Soc. Lond. B 213, 51–477 (1981).

    Google Scholar 

  22. De Valois, R. L. & De Valois, K. K. Vernier acuity with stationary moving Gabors. Vision Res. 31, 1619–1626 (1991).

    Article  CAS  Google Scholar 

  23. Andersen, R. A., Essick, G. K. & Siegel, R. M. Encoding of spatial location by posterior parietal neurons. Science 230, 456–458 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Duhamel, J., Colby, C. L. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Trotter, Y., Celebrini, S., Stricanne, B., Thorpe, S. & Imbert, M. Modulation of neural stereoscopic processing in primate area VI by the viewing distance. Science 257, 1279–1281 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Pouget, A., Fisher, S. A. & Sejnowski, T. J. Egocentric representation in early vision. J. Cogn. Neurosci. 5, 150–161 (1993).

    Article  CAS  Google Scholar 

  27. Pouget, A. & Sejnowski, T. J. Spatial transformations in the parietal cortex using basis functions. J. Cogn. Neurosci. 9, 222–237 (1997).

    Article  CAS  Google Scholar 

  28. Wehrhahn, C. & Westheimer, G. Temporal asynchrony interferes with vernier acuity. Vis. Neurosci. 10, 13–19 (1993).

    Article  CAS  Google Scholar 

  29. Lindblom, B. & Westheimer, G. Binocular summation of hyperacuity tasks. J. Opt. Soc. Am. A 6, 585–589 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, R., Pouget, A., Schlag-Rey, M. et al. Perceived geometrical relationships affected by eye-movement signals. Nature 386, 601–604 (1997). https://doi.org/10.1038/386601a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386601a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing