Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Compression of visual space before saccades

Abstract

Saccadic eye movements, in which the eye moves rapidly between two resting positions, shift the position of our retinal images. If our perception of the world is to remain stable, the visual directions associated with retinal sites, and others they report to, must be updated to compensate for changes in the point of gaze. It has long been suspected that this compensation is achieved by a uniform shift of coordinates driven by an extra-retinal position signal1–3, although some consider this to be unnecessary4–6. Considerable effort has been devoted to a search for such a signal and to measuring its time course and accuracy. Here, by using multiple as well as single targets under normal viewing conditions, we show that changes in apparent visual direction anticipate saccades and are not of the same size, or even in the same direction, for all parts of the visual field. We also show that there is a compression of visual space sufficient to reduce the spacing and even the apparent number of pattern elements. The results are in part consistent with electrophysiological findings of anticipatory shifts in the receptive fields of neurons in parietal cortex7 and superior colliculi8.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. von Helmholtz, H. Handbuch der physiologische Optik (1866); translated by Southall, J. P. C. Treatise on Physiological Optics (Dover, New York, 1963).

    Google Scholar 

  2. Sperry, R. W. Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psych. 43, 482–489 (1950).

    Article  CAS  Google Scholar 

  3. Von Holst, E. & Mittelstaedt, H. Das Reafferenzprinzip. Naturwissenschaften 37, 464–476 (1954).

    Article  ADS  Google Scholar 

  4. Mackay, D. M. Elevation of visual threshold by dislacemcnt of visual images. Nature 225, 90–92 (1970).

    Article  ADS  CAS  Google Scholar 

  5. O'Regan, J. K. Retinal versus extraretinal influences in flash localization during saccadic eye movements in the presence of a visible background. Percept. Psychophy. 36, 1–14 (1984).

    Article  CAS  Google Scholar 

  6. Sperling, G. in Eye movements and their role ill visual and cognitive processes (ed. Knowier, E.) 307–351 (Elsevicr, Amsterdam, 1990).

    Google Scholar 

  7. Duhamel, J.-R., Golby, C. L. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Walker, M. F., Fitzgibbon, J. & Goldberg, M. E. Neurons of the monkey superior colliculus predict the visual result of impeding saccadic eye movements. J. Neurophysiol. 73, 1988–2003 (1995).

    Article  CAS  Google Scholar 

  9. Matin, L. in Handbook of Sensory Physiology VII/4: Visual Psychophysics (eds. lameson, D. & Hurvich, 1.. M.) 331–380 (Springer, Berlin, 1972).

    Google Scholar 

  10. Dassoiwilie, P., Schlag. J. & Schlag-Rey, M. Oculomotor localization relies on a damped rcspresenta-tion of saccadic eye movement displacement in human and nonhuman primates. Visual Neiirosci. 9, 261–269 (1992).

    Article  Google Scholar 

  11. Bovven, R. W. Latencies for chromatic and achromatic visual mechanisms. Vision Res. 21, 1457–1466 (1981).

    Article  Google Scholar 

  12. Matin, L. & Pearce, D. G. Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science 148, 1485–1487 (1965).

    Article  ADS  CAS  Google Scholar 

  13. Bischof, N. & Kramer, E. Untersuchungen und Uberlcgungen zur Richtungswahrnehmung bei wilkuerlichen sakkadischen Augenbewegungeii. Psycheil. Forsch. 32, 185–218 (1968).

    Article  CAS  Google Scholar 

  14. Honda, H. Saccade-contingent displacement of the apparent position of visual stimuli flashed on a dimly illuminated structured background. Vision Res. 33, 709–716 (1993).

    Article  CAS  Google Scholar 

  15. Honda, H. Visual mislocalizaiton produced by a rapid image idsplacement displacement on the retina: examination by means ofdichoptic presentation of a target and its background. Vision Res. 35, 3021–3028 (1995).

    Article  CAS  Google Scholar 

  16. Burr, D. C., Morrone, M. C. & Ross. J. Selective suppression of the magnoceliular visual pathway during saccadic eye movements. Nature 371, 511–513 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Ben Hamed, S. & Duhamel, J.-R., Bremmer, F. & Graf, W. Dynamic changes in visual receptive field organization in the macaque lateral intraparietal area (LIP) during saccade preparation. Soc. Neurosci. Alistr. Part 2, 1619 (1996).

  18. Mishkin M., Ungerleider, L. G. & Macko, K. A. Object vision and spatial vision: two cortical pathways. Trends Nenmsci. 6, 414–417 (1983).

    Article  Google Scholar 

  19. Bridgeman, B. & Stark, L. Ocular propioception and efference copy in registring visual direction. Vision Res. 31, 1903–1913 (1991).

    Article  CAS  Google Scholar 

  20. Deubel, H., Schneider, W. X. & Bridgeman, B. Postsaccdic target blanking prevents saccadic suppression of image displacement. Vision Res. 36, 985–996 (1996).

    Article  CAS  Google Scholar 

  21. Bridgeman, B., Van der Heijden, A. H. C. & Velichkovsky, B. M. A theory of visual stability across saccadic eye movements. Behav. Brain Sri. 17, 247–292 (1994).

    Article  Google Scholar 

  22. Daniel, P. M. & Whitteridge, D. The presentation of the visual field on the cerebral cortex in monkeys. J. Physiol. (l.ond.) 159, 203–221.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, J., Morrone, M. & Burr, D. Compression of visual space before saccades. Nature 386, 598–601 (1997). https://doi.org/10.1038/386598a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386598a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing