Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An endothelial receptor for oxidized low-density lipoprotein

Abstract

Endothelial dysfunction or activation elicited by oxidatively modified low-density lipoprotein (Ox-LDL) has been implicated in the pathogenesis of atherosclerosis1–4, characterized by intimal thickening and lipid deposition in the arteries. Ox-LDL and its lipid constituents impair endothelial production of nitric oxide, and induce the endothelial expression of leukocyte adhesion molecules and smooth-muscle growth factors, which may be involved in atherogenesis5–7. Vascular endothelial cells in culture8,9 and in vivo10,11 internalize and degrade Ox-LDL through a putative receptor-mediated pathway that does not involve macrophage scavenger receptors12–15. Here we report the molecular cloning, using expression cloning strategy, of an Ox-LDL receptor from vascular endothelial cells. The cloned receptor is a membrane protein that belongs structurally to the C-type lectin family, and is expressed in vivo in vascular endothelium and vascular-rich organs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, M. S. & Goldstein, J. L. Annu. Rev. Biochem. 52, 223–261 (1983).

    Article  CAS  Google Scholar 

  2. Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C. & Witztum, J. L. N. Engl. J. Med. 320, 915–924 (1989).

    Article  CAS  Google Scholar 

  3. Kita, T. et al. Proc. Natl Acad. Sci. USA 84, 5928–5931 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Ross, R. Nature 368, 801–809 (1993).

    Article  ADS  Google Scholar 

  5. Gimbrone, M. A. J., Cybulsky, M. I., Kume, N., Collins, T. & Resnick, N. Ann. NY Acad. Sci. 748, 122–132 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Kume, N. & Gimbrone, M. A. J. J. Clin. Invest. 93, 907–911 (1994).

    Article  CAS  Google Scholar 

  7. Kugiyama, K., Kerns, S. A., Morrisett, J. D., Roberts, R. & Henry, P. D. Nature 344, 160–162 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Stein, O. & Stein, Y. Biochim. Biophys. Acta 620, 631–635 (1980).

    Article  CAS  Google Scholar 

  9. Kume, N., Arai, H., Kawai, C. & Kita, T. Biochim. Biophys. Acta 1091, 63–67 (1991).

    Article  CAS  Google Scholar 

  10. Pitas, R. E., Boyles, J., Mahley, R. W. & Bissel, D. M. J. Cell. Biol. 100, 103–117 (1985).

    Article  CAS  Google Scholar 

  11. van Berkel, T. J. C., De Rijke, Y. B. & Kruijt, J. K. J. Biol. Chem. 266, 2282–2289 (1991).

    CAS  PubMed  Google Scholar 

  12. Krieger, M. et al. J. Biol. Chem. 268, 4569–4572 (1993).

    CAS  PubMed  Google Scholar 

  13. Kodama, T. et al. Nature 343, 531–535 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Rohrer, L., Freeman, M., Kodama, T., Penman, M. & Krieger, M. Nature 343, 570–572 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Bickel, P. E. & Freeman, M. W. J. Clin. Invest. 90, 1450–1457 (1992).

    Article  CAS  Google Scholar 

  16. Drickamer, K. J. J. Biol. Chem. 263, 9557–9560 (1988).

    CAS  PubMed  Google Scholar 

  17. Giorda, R. et al. Science 249, 1298–1300 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Endemann, G. et al. J. Biol. Chem. 268, 11811–11816 (1993).

    CAS  PubMed  Google Scholar 

  19. Acton, S. L., Scherer, P. E., Lodish, H. F. & Krieger, M. J. Biol. Chem. 269, 21003–21009 (1994).

    CAS  PubMed  Google Scholar 

  20. Standon, L. W., White, R. T., Bryant, C. M., Protter, A. A. & Endemann, G. J. Biol. Chem. 267, 22446–22451 (1992).

    Google Scholar 

  21. Ramprasad, M. P. et al. Proc. Natl Acad. Sci. USA 92, 9580–9584 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Fraser, I., Hughes, D. & Gordon, S. Nature 364, 343–346 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Show, G. & Kamen, R. Cell 46, 659–667 (1986).

    Article  Google Scholar 

  24. Stephan, Z. F. & Yurachek, E. C. J. Lipid Res. 34, 325–330 (1993).

    CAS  PubMed  Google Scholar 

  25. Ikura, T. et al. Biochem. Biophys. Res. Commun. 203, 1417–1422 (1994).

    Article  CAS  Google Scholar 

  26. Hirt, B. J. Mol. Biol. 26, 365–369 (1967).

    Article  CAS  Google Scholar 

  27. Frohman, M. A., Dush, M. K. & Martin, G. R. Proc. Natl Acad. Sci. USA 85, 8998–9002 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawamura, T., Kume, N., Aoyama, T. et al. An endothelial receptor for oxidized low-density lipoprotein. Nature 386, 73–77 (1997). https://doi.org/10.1038/386073a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386073a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing