Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB

Abstract

The viability of vertebrate cells depends on survival factors which activate signal transduction pathways that suppress apoptosis. Defects in anti-apoptotic signalling pathways are implicated in many pathologies including cancer, in which apoptosis induced by deregulated oncogenes must be forestalled for a tumour to become established. Phosphatidylinositol-3-kinase (PI(3)K) is involved in the intracellular signal transduction of many receptors and has been implicated in the transduction of survival signals in neuronal cells1. We therefore examined the role of PI(3)K, its upstream effector Ras2, and its putative downstream protein kinase effectors PKB/Akt3,4 and p70S6K (ref. 5) in the modulation of apoptosis induced in fibroblasts by the oncoprotein c-Myc. Here we show that Ras activation of PI(3)K suppresses c-Myc-induced apoptosis through the activation of PKB/Akt but not p70S6K. However, we also found that Ras is an effective promoter of apoptosis, through the Raf pathway. Thus Ras activates contradictory intracellular pathways that modulate cell viability. Induction of apoptosis by Ras may be an important factor in limiting the expansion of somatic cells that sustain oncogenic ras mutations.cells

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yao, R. & Cooper, G. M. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267, 2003–2006 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Rodriguez Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Burgering, B. M. & Coffer, P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Franke, T. F. et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81, 727–736 (1995).

    Article  CAS  Google Scholar 

  5. Chung, J., Grammer, T. C., Lemon, K. P., Kazlauskas, A. & Blenis, J. PDGF- and insulin-dependent pp7oS6K activation mediated by phosphatidylinositol-3-OH kinase. Nature 370, 71–75 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Harrington, E., Fanidi, A., Bennett, M. & Evan, G. Modulation of Myc-induced apoptosis by specific cytokines. EMBP J. 13, 3286–3295 (1994).

    Article  CAS  Google Scholar 

  7. Kapeller, R. & Cantley, L. C. Phosphatidylinositol 3-kinase. Bioessays 16, 565–576 (1994).

    Article  CAS  Google Scholar 

  8. Seely, B. L. et al. Localizaiton of the insulin-like growth factor I receptor binding sites for the SH2 domain proteins p85, Syp, and GTPase activating protein. J. Biol. Chem. 270, 19151–19157 (1995).

    Article  CAS  Google Scholar 

  9. Ui, M., Okada, T., Hazeki, K. & Hazeki, O. Wortmannin as a unique probe for an intracellular signalling protein, phosphoinositide 3-kinase. Trends Biochem. Sci. 20, 303–307 (1995).

    Article  CAS  Google Scholar 

  10. Vlahos, C. J., Matter, W. F., Hui, K. Y. & Brown, R. F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-l-benzopyran-4-one (LY294002). J. Biol. Chem. 269, 5241–5248 (1994).

    CAS  PubMed  Google Scholar 

  11. Hawkins, P. T. et al. PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase. Curr. Biol. 5, 393–403 (1995).

    Article  CAS  Google Scholar 

  12. Rodriguez-Viciana, P., Vanhaesebroeck, B., Waterfield, M. D. & Downward, J. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 15, 2442–2451 (1996).

    Article  CAS  Google Scholar 

  13. Littlewood, T., Hancock, D., Danielian, P., Parker, M. & Evan, G. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690 (1995).

    Article  CAS  Google Scholar 

  14. Chung, J., Kuo, C. J., Crabtree, G. R. & Blenis, J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signalling by the 70 & kd & S6 protein kinases. Cell 69, 1227–1236 (1992).

    Article  CAS  Google Scholar 

  15. Warne, P. H., Viciana, P. R. & Downward, J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364, 352–355 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Zhang, X. F. et al. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364, 308–313 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Vojtek, A. B., Hollenberg, S. M. & Cooper, J. A. Mammalian Ras interacts directly with the serine/ threonine kinase Raf. Cell 74, 205–214 (1993).

    Article  CAS  Google Scholar 

  18. Albright, C. F., Giddings, B. W., Liu, J., Vito, M. & Weinberg, R. A. Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J. 12, 339–347 (1993).

    Article  CAS  Google Scholar 

  19. Kikuchi, A., Demo, S. D., Ye, Z. H., Chen, Y. W. & Williams, L. T. ralGDS family members interact with the effector loop of ras p21. Mol. Cell. Biol. 14, 7483–7491 (1994).

    Article  CAS  Google Scholar 

  20. Spaargaren, M. & Bischoff, J. R. Identificaiton of the guanine nucleotide dissociation stimulator for Ral as a putative effector molecule of R-ras, H-ras, and Rap. Proc. Natl Acad. Sci. USA 91, 12609–12613 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Leevers, S. J. & Marshall, C. J. Activation of extracellular signal-regulated kinase, ERK2, by p21ras oncoprotein. EMBO J. 11, 569–574 (1992).

    Article  CAS  Google Scholar 

  22. Cadwallader, K. A., Paterson, H., Macdonald, S. G. & Hancock, J. F. N-terminally myristoylated Ras proteins require palmitoylation or a polybasic domain for plasma membrane localization. Mol. Cell. Biol. 14, 4722–4730 (1994).

    Article  CAS  Google Scholar 

  23. White, M. A. et al. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80, 533–541 (1995).

    Article  CAS  Google Scholar 

  24. Joneson, T., White, M. A., Wigler, M. H. & Bar Sagi, D. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 271, 810–812 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Jiang, H. et al. Involvement of Ral GTPase in v-Src-induced phospholipase D activation. Nature 378, 409–412 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Jullien Flores, V. et al. Bridging Ral GTPase to Rho pathways. RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity. J. Biol. Chem. 270, 22473–22477 (1995).

    Article  CAS  Google Scholar 

  27. Park, S. H. & Weinberg, R. A. A putative effector of Ral has homology to Rho/Rac GTPase activating proteins. Oncogene 11, 2349–2355 (1995).

    CAS  PubMed  Google Scholar 

  28. Leevers, S. J., Paterson, H. F. & Marshall, C. J. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369, 411–414 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Takahashi, A. & Earnshaw, W. ICE-related proteases in apoptosis. Curr. Opin. Genet. Dev. 6, 50–55 (1996).

    Article  CAS  Google Scholar 

  30. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauffmann-Zeh, A., Rodriguez-Viciana, P., Ulrich, E. et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385, 544–548 (1997). https://doi.org/10.1038/385544a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385544a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing