Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct stimulation of Bruton's tyrosine kinase by Gq-protein α-subunit

Abstract

Heterotrimeric guanine-nucleotide-binding regulatory proteins (G proteins) transduce signals from a wide variety of cell-surface receptors to generate physiological responses1. Protein-tyrosine kinases are another group of critical cellular signal transducers and their malfunction often leads to cancer2. Although activation of G-protein-coupled receptors can elicit rapid stimulation of cellular protein-tyrosine phosphorylation3, the mechanism used by G proteins to activate protein-tyrosine kinases is unclear. Here we show that the purified α-subunit of the Gq class of G proteins (Gαq) directly stimulates the activity of a purified non-receptor kinase, Bruton's tyrosine kinase (Btk)4, whereas purified α-subunits from Gi1, GO or Gz proteins do not. Gαq can also activate Btk in vivo. Furthermore, in Btk-deficient cells, stimulation of another kinase, a p38 MAP kinase, by Gq-coupled receptors is blocked. Our results demonstrate that certain protein-tyrosine kinases can be direct effectors of G proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimulation of Btk kinase activity by Gαq.
Figure 2: Stimulation of Btk kinase activity by Gq in vivo.

Similar content being viewed by others

References

  1. Gilman, A. Gproteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649 (1987).

    Article  CAS  Google Scholar 

  2. Hunter, T. & Cooper, J. A. Protein-tyrosine kinases. Annu. Rev. Biochem. 54, 897–930 (1985).

    Article  CAS  Google Scholar 

  3. Hollenberg, M. D. Tyrosine kinase pathways and the regulation of smooth muscle contractility. Trends Pharmacol. Sci. 15, 108–114 (1994).

    Article  CAS  Google Scholar 

  4. Satterthwaite, A. & Witte, O. Genetic analysis of tyrosine kinase function in B cell development. Annu. Rev. Immunol. 14, 131–154 (1996).

    Article  CAS  Google Scholar 

  5. Kozasa, T. & Gilman, A. G. Purification of recombinant G proteins from Sf9 cells by hexahistidine tagging of associated subuits. J. Biol. Chem. 270, 1734–1741 (1995).

    Article  CAS  Google Scholar 

  6. Amrein, K. E., Takacs, B., Stieger, M., Molnos, J., Flint, N. A. & Burn, P. Purification and characterization of recombinant human p50csk protein-tyrosine kinase from an Escherichia coli expression system overproducing the bacterial chaperones GroES and GroEL. Proc. Natl Acad. Sci. USA 92, 1048–1052 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Flint, N. A., Amrein, K. E., Jascur, T. & Burn, P. Purification and characterization of an activated form of the protein tyrosine kianse Lck from an Escherichia coli expression system. J. Cell. Biochem. 55, 389–397 (1994).

    Article  CAS  Google Scholar 

  8. Lindberg, R. A. & Pasquale, E. Isolation of cDNA clones that encode active protein-tyrosine kinases using antibodies against phosphotyrosine. Meth. Enzymol. 200, 557–577 (1991).

    Article  CAS  Google Scholar 

  9. Park, H.et al. Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity 4, 515–525 (1996).

    Article  CAS  Google Scholar 

  10. Smrcka, A. V., Hepler, J. R., Brown, K. O. & Sterweis, P. C. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 251, 804–807 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Lee, C.-W., Lee, K.-H., Lee, S.-B., Park, D. & Rhee, S. G. Regulation of phospholipase C-β4 by ribonucleotides and the α subunit of Gq. J. Biol. Chem. 269, 25335–25338 (1994).

    CAS  PubMed  Google Scholar 

  12. Hepler, J. R. et al. Functional importance of the amino terminus of Gqα. J. Biol. Chem. 271, 496–504 (1996).

    Article  CAS  Google Scholar 

  13. Bigay, J., Deterre, P., Pfister, C. & Chabre, M. Fluoride complexes of aluminium or beryllium act on G-proteins as reversibly bound analogues of the γ phosphate of GTP. EMBO J. 6, 2907–2913 (1987).

    Article  CAS  Google Scholar 

  14. Qian, N.-X., Winitz, S. & Johnson, G. L. Epitope-tagged Gq α subunits: Expression of GTPase-deficient α subunits persistently stimulates phosphatidylinositol-specific phospholipase C but not mitogen-activated protein kinase activity regulated by the M1 muscarinic acetylcholine receptor. Proc. Natl Acad. Sci. USA 90, 4077–4081 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Wan, Y. et al. Genetic evidence for a tyrosine kinase cascade preceding the mitogen-activated protein kinase cascade in vertebrate G protein signaling. J. Biol. Chem. 272, 17209–17215 (1997).

    Article  CAS  Google Scholar 

  16. Han, J., Lee, J. D., Bibbs, L. & Ulevitch, R. J. AMAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Pandey, P. et al. Activation of p38 mitogen-activated protein kinase by c-Abl-dependent and -independent mechanisms. J. Biol. Chem. 271, 23775–23779 (1996).

    Article  CAS  Google Scholar 

  18. Kramer, R. M., Roberts, E. F., Strifler, B. A. & Johnstone, E. M. Thrombin induces activation of p38 MAP kinase in human platelets. J. Biol. Chem. 270, 27395–27398 (1995).

    Article  CAS  Google Scholar 

  19. Krump, E., Sanghera, J. S., Pelech, S. L., Furuya, W. & Grinstein, S. Chemotactic peptide N-formyl-Met-Leu-Phe activation of p38 mitogen-activated protein kinase (MAPK) and MAPK-activated protein kinase-2 in human neutrophils. J. Biol. Chem. 272, 937–944 (1997).

    Article  CAS  Google Scholar 

  20. Andreotti, A. H., Brunnell, S. C., Feng, S., Berg, L. J. & Schreiber, S. L. Regulatory intramolecular association in a tyrosine kinase of the Tec family. Nature 385, 93–97 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Taylor, S. J., Chae, H. Z., Rhee, S. G. & Exton, J. H. Activation of the β1 isozyme of phospholipase C by α-subunits of the Gq class of G proteins. Nature 350, 516–518 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Boyer, J. L., Graber, S. G., Waldo, G. L., Harden, T. K. & Garrison, J. S. Selective activation of phospholipase C by recombinant G-protein α and βγ subunits. J. Biol. Chem. 269, 2814–2819 (1994).

    CAS  PubMed  Google Scholar 

  23. Bolen, J. B. Protein tyrosine kinases in the initiation of antigen receptor signaling. Curr. Opin. Immunol. 7, 306–311 (1995).

    Article  CAS  Google Scholar 

  24. Lemmon, M. A., Ferguson, K. M. & Schlessinger, J. PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 85, 621–624 (1996).

    Article  CAS  Google Scholar 

  25. Langhans-Rajasekaran, S. A., Wan, Y. & Huang, X.-Y. Activation of Tsk and Btk tyrosine kinases by G protein βγ subunits. Proc. Natl Acad. Sci. USA 92, 8601–8605 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Wan, Y., Kurosaki, T. & Huang, X.-Y. Tyrosine kinases in activation of the MAP kinase cascade by G-protein-coupled receptors. Nature 380, 541–544 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Price, D. J., Kawakami, Y., Kawakami, T. & Rivnay, B. Purification of a major tyrosine kinase from RBL-2H3 cells phosphorylating FcεRI γ-cytoplasmic domain and identification as the Btk tyrosine kinase. Biochim. Biophys. Acta 1265, 133–142 (1995).

    Article  Google Scholar 

  28. Wang, C. C. et al. Expression, purification, and characterization of the functional dimeric cytoplasmic domain of human erythrocyte band 3 in E. coli. Protein Sci. 1, 1206–1214 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Stieger for plasmid pREP4groESL; T. Kurosaki for Btk-deficient DT40 cells; P. Low for plasmic pCDB3/T7-7; and L. Levin, T. Maack, C. Malbon and members of our laboratory for reading the manuscript. Part of the Sf9 cells were cultured in the National Cell Culture Center which is supported by the National Center for Research Resources. This work was supported by grants from the NIH, the NSF and the American Heart Association. X-Y.H. is a Cornell Scholar and a Beatrice F. Parvin Investigator of the American Heart Association New York City affiliate.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bence, K., Ma, W., Kozasa, T. et al. Direct stimulation of Bruton's tyrosine kinase by Gq-protein α-subunit. Nature 389, 296–299 (1997). https://doi.org/10.1038/38520

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38520

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing