Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Potent antitumour activity of a new class of tumour-specific killer cells

Abstract

Two approaches to the antibody-directed targeting of toxic or cytolytic activity and augmentation of cellular immune responses have been explored for tumour immunotherapy, but so far success has been limited1–3. Obstacles facing immunotherapy are the limited accessibility of antibodies or antibody conjugates to solid tumours and the difficulty in obtaining tumour-specific cytotoxic lymphocytes4–7. Here we generate a new class of tumour-specific killer cells by genetically modifying lymphocytes to produce and secrete a targeted toxin against an oncoprotein overexpressed on breast and other tumour cells. The transduced lymphocytes were shown to have potent and selective cytotoxicity to tumours in culture and nude mouse models. The potent in vivo antitumour activity is probably a result of the migration of the lymphocytes to tumours as a targeted toxin carrier, and production and accumulation of the targeted toxins inside tumours as a producer. Our approach, which has features of both antibody-directed and cell-mediated immunotherapy, may have application in a gene therapy context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vitetta, E. S., Fulton, R. J., May, R. D., Till, M. & Uhr, J. W. Science 238, 1098–1104 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Pastan, I. & FitzGerald, D. Science 254, 1173–1177 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Rosenberg, S. A. et al. N. Engl. J. Med. 319, 1676–1680 (1988).

    Article  CAS  Google Scholar 

  4. Jain, R. K. Sci. Am. 271, 58–65 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Shockley, T. R. et al. Cancer Res. 52, 357–366 (1992).

    CAS  PubMed  Google Scholar 

  6. Perez, P., Hoffman, R. W., Shaw, S., Bluestone, J. A. & Segal, D. M. Nature 316, 354–356 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Gross, G., Waks, T. & Eshhar, Z. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Hwang, J., Fitzgerald, D. J., Adhya, S. & Pastan, I. Cell 48, 129–136 (1987).

    Article  CAS  Google Scholar 

  9. Walter, P. & Lingappa, V. R. Annu. Rev. Cell Biol. 2, 499–516 (1986).

    Article  CAS  Google Scholar 

  10. Kasprzyk, P. G., Song, S. U., DiFiore, P. P. & King, C. R. Cancer Res. 52, 2771–2776 (1992).

    CAS  PubMed  Google Scholar 

  11. Batra, J. K., Kasprzyk, P. G., Bird, R. E., Pasten, I. & King, C. R. Proc. Natl Acad. Sci. USA 89, 5867–5871 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Chen, S.-Y., Khouri, Y., Bagley, J. & Marasco, W. A. Proc. Natl Acad. Sci. USA 91, 5932–5936 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Potter, C. R. D. et al. Histopathol. 15, 351–362 (1989).

    Article  Google Scholar 

  14. Press, M. F., Cordon-Cardo, C. & Slamon, D. J. Oncogene 5, 953–962 (1990).

    CAS  Google Scholar 

  15. King, C. R., Fischer, P. H., Rando, R. F. & Pastan, I. Sem. Cancer Biol. 7, 79–86 (1996).

    Article  CAS  Google Scholar 

  16. Slamon, D. J. et al. Science 244, 707–712 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Di Fio, P. P. et al. Science 237, 178–182 (1987).

    Article  ADS  Google Scholar 

  18. Kraus, M. H. et al. EMBO J. 6, 605–610 (1987).

    Article  CAS  Google Scholar 

  19. Culver, K. et al. Proc. Natl Acad. Sci. USA 88, 3155–3159 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Miller, A. D., Trauber, D. R. & Buttimore, C. Somat. Cell Mol. Genet. 12, 175–183 (1986).

    Article  CAS  Google Scholar 

  21. Yang, A. & Chen, S.-Y. Nature Biotechnol. (in the press).

  22. Marasco, W. A., Haseltine, W. A. & Chen, S.-Y. Proc. Natl Acad. Sci. USA 90, 7889–7893 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Collier, R. J. & Kandel, J. J. Biol. Chem. 246, 1496–1503 (1971).

    CAS  PubMed  Google Scholar 

  24. Chen, S.-Y., Zani, C., Khouri, Y. & Marasco, W. A. Gene Thera. 2, 116–123 (1995).

    CAS  Google Scholar 

  25. Osborne, C. K., Hobbs, K. & Clark, G. M. Cancer Res. 45, 584–590 (1985).

    CAS  PubMed  Google Scholar 

  26. Johnson, R. A. & Prentice-Hall, W. D. W. (eds) Applied Multivariate Statistical Analysis 226–290 (Englewood Cliffs, NJ, 1982).

  27. Miller, A. D. Curr. Top. Microbiol. Immunol. 158, 1–24 (1992).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, SY., Yang, AG., Chen, JD. et al. Potent antitumour activity of a new class of tumour-specific killer cells. Nature 385, 78–80 (1997). https://doi.org/10.1038/385078a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385078a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing